184,016 research outputs found
Scattering Approach for Fluctuation--Induced Interactions at Fluid Interfaces
We develop the scattering formalism to calculate the interaction between
colloidal particles trapped at a fluid interface. Since, in addition to the
interface, the colloids may also fluctuate in this system, we implement the
fluctuation of the boundaries into the scattering formalism and investigate how
the interaction between colloids is modified by their fluctuations. This
general method can be applied to any number of colloids with various geometries
at an interface. We apply the formalism derived in this work to a system of
spherical colloids at the interface between two fluid phases. For two spherical
colloids, this method very effectively reproduces the previous known results.
For three particles we find analytical expressions for the large separation
asymptotic energies and numerically calculate the Casimir interaction at all
separations. Our results show an interesting three body effect for fixed and
fluctuating colloids. While the three body effect strengthens the attractive
interaction between fluctuating colloids, it diminishes the attractive force
between colloids fixed at an interface
Colloid-colloid and colloid-wall interactions in driven suspensions
We investigate the non-equilibrium fluid structure mediated forces between
two colloids driven through a suspension of mutually non-interacting Brownian
particles as well as between a colloid and a wall in stationary situations. We
solve the Smoluchowski equation in bispherical coordinates as well as with a
method of reflections, both in linear approximation for small velocities and
numerically for intermediate velocities, and we compare the results to a
superposition approximation considered previously. In particular we find an
enhancement of the friction (compared to the friction on an isolated particle)
for two colloids driven side by side as well as for a colloid traveling along a
wall. The friction on tailgating colloids is reduced. Colloids traveling side
by side experience a solute induced repulsion while tailgating colloids are
attracted to each other.Comment: 8 Pages, 8 figure
Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids
New experimental results are presented on low temperature irradiation (18 °C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 °C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.
Self-assembly of Active Colloidal Molecules with Dynamic Function
Catalytically active colloids maintain non-equilibrium conditions in which
they produce and deplete chemicals and hence effectively act as sources and
sinks of molecules. While individual colloids that are symmetrically coated do
not exhibit any form of dynamical activity, the concentration fields resulting
from their chemical activity decay as and produce gradients that attract
or repel other colloids depending on their surface chemistry and ambient
variables. This results in a non-equilibrium analogue of ionic systems, but
with the remarkable novel feature of action-reaction symmetry breaking. We
study solutions of such chemically active colloids in dilute conditions when
they join up to form molecules via generalized ionic bonds, and discuss how we
can achieve structures with time dependent functionality. In particular, we
study a molecule that adopts a spontaneous oscillatory pattern of
conformations, and another that exhibits a run-and-tumble dynamics similar to
bacteria. Our study shows that catalytically active colloids could be used for
designing self-assembled structures that posses dynamical functionalities that
are determined by their prescribed 3D structures, a strategy that follows the
design principle of proteins
Recommended from our members
Deck the Walls with Anisotropic Colloids in Nematic Liquid Crystals.
Nematic liquid crystals (NLCs) offer remarkable opportunities to direct colloids to form complex structures. The elastic energy field that dictates colloid interactions is determined by the NLC director field, which is sensitive to and can be controlled by boundaries including vessel walls and colloid surfaces. By molding the director field via liquid-crystal alignment on these surfaces, elastic energy landscapes can be defined to drive structure formation. We focus on colloids in otherwise defect-free director fields formed near undulating walls. Colloids can be driven along prescribed paths and directed to well-defined docking sites on such wavy boundaries. Colloids that impose strong alignment generate topologically required companion defects. Configurations for homeotropic colloids include a dipolar structure formed by the colloid and its companion hedgehog defect or a quadrupolar structure formed by the colloid and its companion Saturn ring. Adjacent to wavy walls with wavelengths larger than the colloid diameter, spherical particles are attracted to locations along the wall with distortions in the nematic director field that complement those from the colloid. This is the basis of lock-and-key interactions. Here, we study ellipsoidal colloids with homeotropic anchoring near complex undulating walls. The walls impose distortions that decay with distance from the wall to a uniform director in the far field. Ellipsoids form dipolar defect configurations with the colloid's major axis aligned with the far field director. Two distinct quadrupolar defect structures also form, stabilized by confinement; these include the Saturn I configuration with the ellipsoid's major axis aligned with the far field director and the Saturn II configuration with the major axis perpendicular to the far field director. The ellipsoid orientation varies only weakly in bulk and near undulating walls. All configurations are attracted to walls with long, shallow waves. However, for walls with wavelengths that are small compared to the colloid length, Saturn II is repelled, allowing selective docking of aligned objects. Deep, narrow wells prompt the insertion of a vertical ellipsoid. By introducing an opening at the bottom of such a deep well, we study colloids within pores that connect two domains. Ellipsoids with different aspect ratios find different equilibrium positions. An ellipsoid of the right dimension and aspect ratio can plug the pore, creating a class of 2D selective membranes
Liquid bridging of cylindrical colloids in near-critical solvents
Within mean field theory, we investigate the bridging transition between a
pair of parallel cylindrical colloids immersed in a binary liquid mixture as a
solvent which is close to its critical consolute point . We determine the
universal scaling functions of the effective potential and of the force between
the colloids. For a solvent which is at the critical concentration and close to
, we find that the critical Casimir force is the dominant interaction at
close separations. This agrees very well with the corresponding Derjaguin
approximation for the effective interaction between the two cylinders, while
capillary forces originating from the extension of the liquid bridge turn out
to be more important at large separations. In addition, we are able to infer
from the wetting characteristics of the individual colloids the first-order
transition of the liquid bridge connecting two colloidal particles to the
ruptured state. While specific to cylindrical colloids, the results presented
here provide also an outline for identifying critical Casimir forces acting on
bridged colloidal particles as such, and for analyzing the bridging transition
between them.Comment: 23 pages, 12 figure
- …
