184,016 research outputs found

    Scattering Approach for Fluctuation--Induced Interactions at Fluid Interfaces

    Full text link
    We develop the scattering formalism to calculate the interaction between colloidal particles trapped at a fluid interface. Since, in addition to the interface, the colloids may also fluctuate in this system, we implement the fluctuation of the boundaries into the scattering formalism and investigate how the interaction between colloids is modified by their fluctuations. This general method can be applied to any number of colloids with various geometries at an interface. We apply the formalism derived in this work to a system of spherical colloids at the interface between two fluid phases. For two spherical colloids, this method very effectively reproduces the previous known results. For three particles we find analytical expressions for the large separation asymptotic energies and numerically calculate the Casimir interaction at all separations. Our results show an interesting three body effect for fixed and fluctuating colloids. While the three body effect strengthens the attractive interaction between fluctuating colloids, it diminishes the attractive force between colloids fixed at an interface

    Colloid-colloid and colloid-wall interactions in driven suspensions

    Full text link
    We investigate the non-equilibrium fluid structure mediated forces between two colloids driven through a suspension of mutually non-interacting Brownian particles as well as between a colloid and a wall in stationary situations. We solve the Smoluchowski equation in bispherical coordinates as well as with a method of reflections, both in linear approximation for small velocities and numerically for intermediate velocities, and we compare the results to a superposition approximation considered previously. In particular we find an enhancement of the friction (compared to the friction on an isolated particle) for two colloids driven side by side as well as for a colloid traveling along a wall. The friction on tailgating colloids is reduced. Colloids traveling side by side experience a solute induced repulsion while tailgating colloids are attracted to each other.Comment: 8 Pages, 8 figure

    Radiolysis of NaCl at high and low temperatures: development of size distribution of bubbles and colloids

    Get PDF
    New experimental results are presented on low temperature irradiation (18 °C) of rock-salt samples which had been exposed to initial doses up to 320 GRad at 100 °C. Differential scanning calorimetry (DSC) shows that the latent heat of melting (LHM) of sodium colloids decreases during subsequent low-temperature irradiation, whereas the stored energy (SE) increases slowly, indicating that the process of radiolysis continues. The decrease of the LHM is due to dissolution of large colloids, because the intensities of the melting peaks decrease during the second stage irradiation at low temperature. The model is formulated to describe the nucleation kinetics and the evolution of the size distribution of chlorine precipitates and sodium colloids in NaCl under high dose irradiation. It is shown that the mechanism of dissolution of large Na colloids during low temperature irradiation can be related to melting of sodium colloids.

    Self-assembly of Active Colloidal Molecules with Dynamic Function

    Full text link
    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds, and discuss how we can achieve structures with time dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations, and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities that are determined by their prescribed 3D structures, a strategy that follows the design principle of proteins

    Liquid bridging of cylindrical colloids in near-critical solvents

    Full text link
    Within mean field theory, we investigate the bridging transition between a pair of parallel cylindrical colloids immersed in a binary liquid mixture as a solvent which is close to its critical consolute point TcT_c. We determine the universal scaling functions of the effective potential and of the force between the colloids. For a solvent which is at the critical concentration and close to TcT_c, we find that the critical Casimir force is the dominant interaction at close separations. This agrees very well with the corresponding Derjaguin approximation for the effective interaction between the two cylinders, while capillary forces originating from the extension of the liquid bridge turn out to be more important at large separations. In addition, we are able to infer from the wetting characteristics of the individual colloids the first-order transition of the liquid bridge connecting two colloidal particles to the ruptured state. While specific to cylindrical colloids, the results presented here provide also an outline for identifying critical Casimir forces acting on bridged colloidal particles as such, and for analyzing the bridging transition between them.Comment: 23 pages, 12 figure
    corecore