128,779 research outputs found
Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms
Multi-stage sensing is a novel concept that refers to a general class of
spectrum sensing algorithms that divide the sensing process into a number of
sequential stages. The number of sensing stages and the sensing technique per
stage can be used to optimize performance with respect to secondary user
throughput and the collision probability between primary and secondary users.
So far, the impact of multi-stage sensing on network throughput and collision
probability for a realistic network model is relatively unexplored. Therefore,
we present the first analytical framework which enables performance evaluation
of different multi-channel multi-stage spectrum sensing algorithms for
Opportunistic Spectrum Access networks. The contribution of our work lies in
studying the effect of the following parameters on performance: number of
sensing stages, physical layer sensing techniques and durations per each stage,
single and parallel channel sensing and access, number of available channels,
primary and secondary user traffic, buffering of incoming secondary user
traffic, as well as MAC layer sensing algorithms. Analyzed performance metrics
include the average secondary user throughput and the average collision
probability between primary and secondary users. Our results show that when the
probability of primary user mis-detection is constrained, the performance of
multi-stage sensing is, in most cases, superior to the single stage sensing
counterpart. Besides, prolonged channel observation at the first stage of
sensing decreases the collision probability considerably, while keeping the
throughput at an acceptable level. Finally, in realistic primary user traffic
scenarios, using two stages of sensing provides a good balance between
secondary users throughput and collision probability while meeting successful
detection constraints subjected by Opportunistic Spectrum Access communication
Practical Spectrum Aggregation for Secondary Networks with Imperfect Sensing
We investigate a collision-sensitive secondary network that intends to opportunistically aggregate and utilize spectrum of a primary network to achieve higher data rates. In opportunistic spectrum access with imperfect sensing of idle primary spectrum, secondary transmission can collide with primary transmission. When the secondary network aggregates more channels in the presence of the imperfect sensing, collisions could occur more often, limiting the performance obtained by spectrum aggregation. In this context, we aim to address a fundamental query, that is, how much spectrum aggregation is worthy with imperfect sensing. For collision occurrence, we focus on two different types of collision: one is imposed by asynchronous transmission; and the other by imperfect spectrum sensing. The collision probability expression has been derived in closed-form with various secondary network parameters: primary traffic load, secondary user transmission parameters, spectrum sensing errors, and the number of aggregated sub-channels. In addition, the impact of spectrum aggregation on data rate is analysed under the constraint of collision probability. Then, we solve an optimal spectrum aggregation problem and propose the dynamic spectrum aggregation approach to increase the data rate subject to practical collision constraints. Our simulation results show clearly that the proposed approach outperforms the benchmark that passively aggregates sub-channels with lack of collision awareness
Reconnection of Non-Abelian Cosmic Strings
Cosmic strings in non-abelian gauge theories naturally gain a spectrum of
massless, or light, excitations arising from their embedding in color and
flavor space. This opens up the possibility that colliding strings miss each
other in the internal space, reducing the probability of reconnection. We study
the topology of the non-abelian vortex moduli space to determine the outcome of
string collision. Surprisingly we find that the probability of classical
reconnection in this system remains unity, with strings passing through each
other only for finely tuned initial conditions. We proceed to show how this
conclusion can be changed by symmetry breaking effects, or by quantum effects
associated to fermionic zero modes, and present examples where the probability
of reconnection in a U(N) gauge theory ranges from 1/N for low-energy
collisions to one at higher energies.Comment: 25 Pages, 3 Figures. v2: comment added, reference adde
Deviation from standard QED at large distances: influence of transverse dimensions of colliding beams on bremsstrahlung
The radiation at collision of high-energy particles is formed over a rather
long distances and therefore is sensitive to an environment. In particular the
smallness of the transverse dimensions of the colliding beams leads to
suppression of bremsstrahlung cross section for soft photons. This beam-size
effect was discovered and investigated at INP, Novosibirsk around 1980. At that
time an incomplete expression for the bremsstrahlung spectrum was calculated
and used because a subtraction associated with the extraction of pure
fluctuation process was not performed. Here this procedure is done. The
complete expression for the spectral-angular distribution of incoherent
bremsstrahlung probability is obtained. The case of Gaussian colliding beams is
investigated in details. In the case of flat beams the expressions for the
bremsstrahlung spectrum are simplified essentially. Comparison of theory with
VEPP4 and HERA data is performed. Possible application of the effect to linear
collider tuning is discussed.Comment: 23 pagers,5 figure
A collision-tolerant based anti-collision algorithm for large scale RFID system
Tag identification is an important issue in RFID system. Most existing anti-collision algorithms solely focus on reducing collision probability while suffering from vast idle slots. This paper proposes a collision-tolerant dynamic framed slotted Aloha (CE-DFSA) algorithm which attempts to identify multiple tags in a slot to reduce the total identification time in the process of identification. In CE-DFSA, tags are allocated with orthogonal Walsh Sequence (WS) so that multiple tags can be identified in a time slot without spreading the spectrum. Simulation results show that the proposed algorithm considerably accelerates the tag identification process with improved efficiency compared with existing anti-collision algorithms
New Results on e+e- Line Emission in U+Ta Collisions
We present new results obtained from a series of follow-up e+e- coincidence
measurements in heavy-ion collisions, utilizing an improved experimental set-up
at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was
reinvestigated in three independent runs at beam energies in the range
(6.0-6.4)xA MeV and different target thicknesses, with the objective to
reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this
collision system. At improved statistical accuracy, the line could not be found
in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on
its production probability per collision of 1.3x10^{-8} can be set which has to
be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0
(syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data
shows that the continuous part of the spectrum at the line position is
significantly higher than previously assumed, thus reducing the production
probability of the line by a factor of two and its statistical significance to
< 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to
Physics Letters
A Sensing Error Aware MAC Protocol for Cognitive Radio Networks
Cognitive radios (CR) are intelligent radio devices that can sense the radio
environment and adapt to changes in the radio environment. Spectrum sensing and
spectrum access are the two key CR functions. In this paper, we present a
spectrum sensing error aware MAC protocol for a CR network collocated with
multiple primary networks. We explicitly consider both types of sensing errors
in the CR MAC design, since such errors are inevitable for practical spectrum
sensors and more important, such errors could have significant impact on the
performance of the CR MAC protocol. Two spectrum sensing polices are presented,
with which secondary users collaboratively sense the licensed channels. The
sensing policies are then incorporated into p-Persistent CSMA to coordinate
opportunistic spectrum access for CR network users. We present an analysis of
the interference and throughput performance of the proposed CR MAC, and find
the analysis highly accurate in our simulation studies. The proposed sensing
error aware CR MAC protocol outperforms two existing approaches with
considerable margins in our simulations, which justify the importance of
considering spectrum sensing errors in CR MAC design.Comment: 21 page, technical repor
- …
