197,203 research outputs found

    Predicting Health Impacts of the World Trade Center Disaster: 1. Halogenated hydrocarbons, symptom syndromes, secondary victimization, and the burdens of history

    Get PDF
    The recent attack on the World Trade Center, in addition to direct injury and psychological trauma, has exposed a vast population to dioxins, dibenzofurans, related endocrine disruptors, and a multitude of other physiologically active chemicals arising from the decomposition of the massive quantities of halogenated hydrocarbons and other plastics within the affected buildings. The impacts of these chemical species have been compounded by exposure to asbestos, fiberglass, crushed glass, concrete, plastic, and other irritating dusts. To address the manifold complexities of this incident we combine recent theoretical perspectives on immune, CNS, and sociocultural cognition with empirical studies on survivors of past large toxic fires, other community-scale chemical exposure incidents, and the aftereffects of war. Our analysis suggests the appearance of complex, but distinct and characteristic, spectra of synergistically linked social, psychosocial, psychological and physical symptoms among the 100,000 or so persons most directly affected by the WTC attack. The different 'eigenpatterns' should become increasingly comorbid as a function of exposure. The expected outcome greatly transcends a simple 'Post Traumatic Stress Disorder' model, and may resemble a particularly acute form of Gulf War Syndrome. We explore the role of external social factors in subsequent exacerbation of the syndrome -- secondary victimization -- and study the path-dependent influence of individual and community-level historical patterns of stress. We suggest that workplace and other organizations can act as ameliorating intermediaries. Those without acess to such buffering structures appear to face a particularly bleak future

    Immune cognition, social justice and asthma: structured stress and the developing immune system

    Get PDF
    We explore the implications of IR Cohen's work on immune cognition for understanding rising rates of asthma morbidity and mortality in the US. Immune cognition is conjoined with central nervous system cognition, and with the cognitive function of the embedding sociocultural networks by which individuals are acculturated and through which they work with others to meet challenges of threat and opportunity. Using a mathematical model, we find that externally- imposed patterns of 'structured stress' can, through their effect on a child's socioculture, become synergistic with the development of immune cognition, triggering the persistence of an atopic Th2 phenotype, a necessary precursor to asthma and other immune disease. Reversal of the rising tide of asthma and related chronic diseases in the US thus seems unlikely without a 21st Century version of the earlier Great Urban Reforms which ended the scourge of infectious diseases

    Selection pressure and organizational cognition: implications for the social determinants of health

    Get PDF
    We model the effects of Schumperterian 'selecton pressures' -- in particular Apartheid and the neoliberal 'market economy' -- on organizational cognition in minority communities, given the special role of culture in human biology. Our focus is on the dual-function social networks by which culture is imposed and maintained on individuals and by which immediate patterns of opportunity and threat are recognized and given response. A mathematical model based on recent advances in complexity theory displays a joint cross-scale linkage of social, individual central nervous system, and immune cognition with external selection pressure through mixed and synergistic punctuated 'learning plateaus.' This provides a natural mechanism for addressing the social determinants of health at the individual level. The implications of the model, particularly the predictions of synergistic punctuation, appear to be empirically testable

    LCrowdV: Generating Labeled Videos for Simulation-based Crowd Behavior Learning

    Full text link
    We present a novel procedural framework to generate an arbitrary number of labeled crowd videos (LCrowdV). The resulting crowd video datasets are used to design accurate algorithms or training models for crowded scene understanding. Our overall approach is composed of two components: a procedural simulation framework for generating crowd movements and behaviors, and a procedural rendering framework to generate different videos or images. Each video or image is automatically labeled based on the environment, number of pedestrians, density, behavior, flow, lighting conditions, viewpoint, noise, etc. Furthermore, we can increase the realism by combining synthetically-generated behaviors with real-world background videos. We demonstrate the benefits of LCrowdV over prior lableled crowd datasets by improving the accuracy of pedestrian detection and crowd behavior classification algorithms. LCrowdV would be released on the WWW

    Toward Cultural Oncology: The Evolutionary Information Dynamics of Cancer

    Get PDF
    'Racial' disparities among cancers, particularly of the breast and prostate, are something of a mystery. For the US, in the face of slavery and its sequelae, centuries of interbreeding have greatly leavened genetic differences between 'Blacks' and 'whites', but marked contrasts in disease prevalence and progression persist. 'Adjustment' for socioeconomic status and lifestyle, while statistically accounting for much of the variance in breast cancer, only begs the question of ultimate causality. Here we propose a more basic biological explanation that extends the theory of immune cognition to include elaborate tumor control mechanisms constituting the principal selection pressure acting on pathologically mutating cell clones. The interplay between them occurs in the context of an embedding, highly structured, system of culturally specific psychosocial stress which we find is able to literally write an image of itself onto disease progression. The dynamics are analogous to punctuated equilibrium in simple evolutionary proces

    Chronic infection: punctuated interpenetration and pathogen virulence

    Get PDF
    We apply an information dynamics formalism to the Levens and Lewontin vision of biological interpenetration between a 'cognitive condensation' including immune function embedded in social and cultural structure on the one hand, and an established, highly adaptive, parasite population on the other. We iterate the argument, beginning with direct interaction between cognitive condensation and pathogen, then extend the analysis to second order 'mutator' mechanisms inherent both to immune function and to certain forms of rapid pathogen antigenic variability. The methodology, based on the Large Deviations Program of applied probability, produces synergistic cognitive/adaptive 'learning plateaus' that represent stages of chronic infection, and, for human populations, is able to encompass the fundamental biological reality of culture omitted by other approaches. We conclude that, for 'evolution machine' pathogens like HIV and malaria, simplistic magic bullet 'medical' drug, vaccine, or behavior modification interventions which do not address the critical context of overall living and working conditions may constitute selection pressures triggering adaptations in life history strategy resulting in marked increase of pathogen virulenc

    A high order feedback net (HOFNET) with variable non-linearity

    Get PDF
    Most neural networks proposed for pattern recognition sample the incoming image at one instant and then analyse it. This means that the data to be analysed is limited to that containing the noise present at one instant. Time independent noise is therefore, captured but only one sample of time dependent noise is included in the analysis. If however, the incoming image is sampled at several instants, or continuously, then in the subsequent analysis the time dependent noise can be averaged out. This, of course, assumes that sufficient samples can be taken before the object being imaged, has moved an appreciable distance in the field of view. High speed sampling requires parallel image input and is most conveniently carried out by optoelectronic neural network image analysis systems. Optical technology is particularly good at performing certain operations, such as Fourier Transforms, correlations and convolutions while others such as subtraction are difficult. So for an optical net it is best to choose an architecture based on convenient operations such as the high order neural networks
    • 

    corecore