7 research outputs found

    MARS: An Educational Environment for Multiagent Robot Simulations

    Get PDF
    Undergraduate robotics students often find it difficult to design and validate control algorithms for teams of mobile robots. This is mainly due to two reasons. First, very rarely educational laboratories are equipped with large teams of robots, which are usually expensive, bulky and difficult to manage and maintain. Second, robotics simulators often require student to spend much time to learn their use and functionalities. For this purpose, a simulator of multi-agent mobile robots named MARS has been developed within the Matlab environment, with the aim of facilitating students to simulate a wide variety of control algorithms in an easy way and without spending time for understanding a new language. Through this facility, the user is able to simulate multi-robot teams performing different tasks, from cooperative to competitive ones, by using both centralized and distributed controllers. Virtual sensors are provided to simulate real devices. A graphical user interface allows students to monitor the robots behaviour through an online animation

    Collective circular motion of multi-vehicle systems

    No full text
    This paper addresses a collective motion problem for a multi-agent system composed of nonholonomic vehicles. The aim of the vehicles is to achieve circular motion around a virtual reference beacon. A control law is proposed, which guarantees global asymptotic stability of the circular motion with a prescribed direction of rotation, in the case of a single vehicle. Equilibrium configurations of the multi-vehicle system are studied and sufficient conditions for their local stability are given, in terms of the control law design parameters. Practical issues related to sensory limitations are taken into account. The transient behavior of the multi-vehicle system is analyzed via numerical simulations

    Collective circular motion of multi-vehicle systems with sensory limitations

    No full text

    Collective circular motion of multi-vehicle systems with sensory limitations

    No full text
    Collective motion of a multi-agent system composed of nonholonomic vehicles is addressed. The aim of the vehicles is to achieve rotational motion around a virtual reference beacon. A control law is proposed, which guarantees global asymptotic stability of the circular motion with a prescribed direction of rotation, in the case of a single vehicle. Equilibrium configurations of the multi-vehicle system are studied and sufficient conditions for their local stability are given, in terms of the control law design parameters. Practical issues related to sensory limitations are taken into account. The transient behavior of the multi-vehicle system is analyzed via numerical simulations
    corecore