1,091 research outputs found

    Collective transport in the insulating state of Josephson junction arrays

    Full text link
    We investigate collective Cooper-pair transport of one- and two-dimensional Josephson junction arrays in the insulating state. We derive an analytical expression for the current-voltage characteristic revealing thermally activated conductivity at small voltages and threshold voltage depinning. The activation energy and the related depinning voltage represent a dynamic Coulomb barrier for collective charge transfer over the whole system and scale with the system size. We show that both quantities are non-monotonic functions of magnetic field. We propose that formation of the dynamic Coulomb barrier as well as the size scaling of the activation energy and the depinning threshold voltage, are consequences of the mutual phase synchronization. We apply the results for interpretation of experimental data in disordered films near the superconductor-insulator transition.Comment: 4 pages, 2 figures; typos corrected, new figures, an improved fit to experimental dat

    Driven depinning of strongly disordered media and anisotropic mean-field limits

    Get PDF
    Extended systems driven through strong disorder are modeled generically using coarse-grained degrees of freedom that interact elastically in the directions parallel to the driving force and that slip along at least one of the directions transverse to the motion. A realization of such a model is a collection of elastic channels with transverse viscous couplings. In the infinite range limit this model has a tricritical point separating a region where the depinning is continuous, in the universality class of elastic depinning, from a region where depinning is hysteretic. Many of the collective transport models discussed in the literature are special cases of the generic model.Comment: 4 pages, 2 figure

    Irreversible flow of vortex matter: polycrystal and amorphous phases

    Get PDF
    We investigate the microscopic mechanisms giving rise to plastic depinning and irreversible flow in vortex matter. The topology of the vortex array crucially determines the flow response of this system. To illustrate this claim, two limiting cases are considered: weak and strong pinning interactions. In the first case disorder is strong enough to introduce plastic effects in the vortex lattice. Diffraction patterns unveil polycrystalline lattice topology with dislocations and grain boundaries determining the electromagnetic response of the system. Filamentary flow is found to arise as a consequence of dislocation dynamics. We analize the stability of vortex lattices against the formation of grain boundaries, as well as the steady state dynamics for currents approaching the depinning critical current from above, when vortex motion is mainly localized at the grain boundaries. On the contrary, a dislocation description proves no longer adequate in the second limiting case examined. For strong pinning interactions, the vortex array appears completely amorphous and no remnant of the Abrikosov lattice order is left. Here we obtain the critical current as a function of impurity density, its scaling properties, and characterize the steady state dynamics above depinning. The plastic depinning observed in the amorphous phase is tightly connected with the emergence of channel-like flow. Our results suggest the possibility of establishing a clear distinction between two topologically disordered vortex phases: the vortex polycrystal and the amorphous vortex matter.Comment: 13 pages, 16 figure

    Collective Coordinates Theory for Discrete Soliton Ratchets in the sine-Gordon Model

    Get PDF
    A collective coordinate theory is develop for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete non-linear equation. The evolution of these two collective coordinates, obtained by means of the Generalized Travelling Wave Method, explains the mechanism underlying the soliton ratchet and captures qualitatively all the main features of this phenomenon. The theory accounts for the existence of a non-zero depinning threshold, the non-sinusoidal behaviour of the average velocity as a function of the difference phase between the harmonics of the driver, the non-monotonic dependence of the average velocity on the damping and the existence of non-transporting regimes beyond the depinning threshold. In particular it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space

    Collective Sliding States for Colloidal Molecular Crystals

    Full text link
    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.Comment: 4 pages, 5 postscript figure
    • …
    corecore