484,634 research outputs found

    Supervised Collective Classification for Crowdsourcing

    Full text link
    Crowdsourcing utilizes the wisdom of crowds for collective classification via information (e.g., labels of an item) provided by labelers. Current crowdsourcing algorithms are mainly unsupervised methods that are unaware of the quality of crowdsourced data. In this paper, we propose a supervised collective classification algorithm that aims to identify reliable labelers from the training data (e.g., items with known labels). The reliability (i.e., weighting factor) of each labeler is determined via a saddle point algorithm. The results on several crowdsourced data show that supervised methods can achieve better classification accuracy than unsupervised methods, and our proposed method outperforms other algorithms.Comment: to appear in IEEE Global Communications Conference (GLOBECOM) Workshop on Networking and Collaboration Issues for the Internet of Everythin

    Transfer Learning across Networks for Collective Classification

    Full text link
    This paper addresses the problem of transferring useful knowledge from a source network to predict node labels in a newly formed target network. While existing transfer learning research has primarily focused on vector-based data, in which the instances are assumed to be independent and identically distributed, how to effectively transfer knowledge across different information networks has not been well studied, mainly because networks may have their distinct node features and link relationships between nodes. In this paper, we propose a new transfer learning algorithm that attempts to transfer common latent structure features across the source and target networks. The proposed algorithm discovers these latent features by constructing label propagation matrices in the source and target networks, and mapping them into a shared latent feature space. The latent features capture common structure patterns shared by two networks, and serve as domain-independent features to be transferred between networks. Together with domain-dependent node features, we thereafter propose an iterative classification algorithm that leverages label correlations to predict node labels in the target network. Experiments on real-world networks demonstrate that our proposed algorithm can successfully achieve knowledge transfer between networks to help improve the accuracy of classifying nodes in the target network.Comment: Published in the proceedings of IEEE ICDM 201

    Neural network based path collective variables for enhanced sampling of phase transformations

    Full text link
    We propose a rigorous construction of a 1D path collective variable to sample structural phase transformations in condensed matter. The path collective variable is defined in a space spanned by global collective variables that serve as classifiers derived from local structural units. A reliable identification of local structural environments is achieved by employing a neural network based classification. The 1D path collective variable is subsequently used together with enhanced sampling techniques to explore the complex migration of a phase boundary during a solid-solid phase transformation in molybdenum

    Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation

    Full text link
    Many security and privacy problems can be modeled as a graph classification problem, where nodes in the graph are classified by collective classification simultaneously. State-of-the-art collective classification methods for such graph-based security and privacy analytics follow the following paradigm: assign weights to edges of the graph, iteratively propagate reputation scores of nodes among the weighted graph, and use the final reputation scores to classify nodes in the graph. The key challenge is to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. Although collective classification has been studied and applied for security and privacy problems for more than a decade, how to address this challenge is still an open question. In this work, we propose a novel collective classification framework to address this long-standing challenge. We first formulate learning edge weights as an optimization problem, which quantifies the goals about the final reputation scores that we aim to achieve. However, it is computationally hard to solve the optimization problem because the final reputation scores depend on the edge weights in a very complex way. To address the computational challenge, we propose to jointly learn the edge weights and propagate the reputation scores, which is essentially an approximate solution to the optimization problem. We compare our framework with state-of-the-art methods for graph-based security and privacy analytics using four large-scale real-world datasets from various application scenarios such as Sybil detection in social networks, fake review detection in Yelp, and attribute inference attacks. Our results demonstrate that our framework achieves higher accuracies than state-of-the-art methods with an acceptable computational overhead.Comment: Network and Distributed System Security Symposium (NDSS), 2019. Dataset link: http://gonglab.pratt.duke.edu/code-dat

    Supervised Blockmodelling

    Full text link
    Collective classification models attempt to improve classification performance by taking into account the class labels of related instances. However, they tend not to learn patterns of interactions between classes and/or make the assumption that instances of the same class link to each other (assortativity assumption). Blockmodels provide a solution to these issues, being capable of modelling assortative and disassortative interactions, and learning the pattern of interactions in the form of a summary network. The Supervised Blockmodel provides good classification performance using link structure alone, whilst simultaneously providing an interpretable summary of network interactions to allow a better understanding of the data. This work explores three variants of supervised blockmodels of varying complexity and tests them on four structurally different real world networks.Comment: Workshop on Collective Learning and Inference on Structured Data 201

    A Logic for Reasoning about Group Norms

    Get PDF
    We present a number of modal logics to reason about group norms. As a preliminary step, we discuss the ontological status of the group to which the norms are applied, by adapting the classification made by Christian List of collective attitudes into aggregated, common, and corporate attitudes. Accordingly, we shall introduce modality to capture aggregated, common, and corporate group norms. We investigate then the principles for reasoning about those types of modalities. Finally, we discuss the relationship between group norms and types of collective responsibility

    Measuring Skill level integrating Administratrive Dataset and National Collective Agreement Archive

    Get PDF
    Given the group job classification and collective agreement identification code, we extracted from the national bargaining archive the skill level definition and we created a skill grades classification for the workers. We added this information to Workers History Italian Panel -Whip-, and we created a new variable which allow us to identify whether a worker is skilled or unskilled. The new skill level variable increase the possibility for a better comprehension of labour market issues as well as for new studies in the field of job risk evaluation. The sections are organized as follow: 1. creation of skill level classification from national collective agreements archive; 2. short explanation of Whip archives; 3. adding informations to Whip archives; 4. checking the consistency and coverage of the skill level variable in Whip; 5. a first interpretation of the resulting skill distribution.
    corecore