2,151 research outputs found

    Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation

    Full text link
    Many security and privacy problems can be modeled as a graph classification problem, where nodes in the graph are classified by collective classification simultaneously. State-of-the-art collective classification methods for such graph-based security and privacy analytics follow the following paradigm: assign weights to edges of the graph, iteratively propagate reputation scores of nodes among the weighted graph, and use the final reputation scores to classify nodes in the graph. The key challenge is to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. Although collective classification has been studied and applied for security and privacy problems for more than a decade, how to address this challenge is still an open question. In this work, we propose a novel collective classification framework to address this long-standing challenge. We first formulate learning edge weights as an optimization problem, which quantifies the goals about the final reputation scores that we aim to achieve. However, it is computationally hard to solve the optimization problem because the final reputation scores depend on the edge weights in a very complex way. To address the computational challenge, we propose to jointly learn the edge weights and propagate the reputation scores, which is essentially an approximate solution to the optimization problem. We compare our framework with state-of-the-art methods for graph-based security and privacy analytics using four large-scale real-world datasets from various application scenarios such as Sybil detection in social networks, fake review detection in Yelp, and attribute inference attacks. Our results demonstrate that our framework achieves higher accuracies than state-of-the-art methods with an acceptable computational overhead.Comment: Network and Distributed System Security Symposium (NDSS), 2019. Dataset link: http://gonglab.pratt.duke.edu/code-dat

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    Eight years of rider measurement in the Android malware ecosystem: evolution and lessons learned

    Full text link
    Despite the growing threat posed by Android malware, the research community is still lacking a comprehensive view of common behaviors and trends exposed by malware families active on the platform. Without such view, the researchers incur the risk of developing systems that only detect outdated threats, missing the most recent ones. In this paper, we conduct the largest measurement of Android malware behavior to date, analyzing over 1.2 million malware samples that belong to 1.2K families over a period of eight years (from 2010 to 2017). We aim at understanding how the behavior of Android malware has evolved over time, focusing on repackaging malware. In this type of threats different innocuous apps are piggybacked with a malicious payload (rider), allowing inexpensive malware manufacturing. One of the main challenges posed when studying repackaged malware is slicing the app to split benign components apart from the malicious ones. To address this problem, we use differential analysis to isolate software components that are irrelevant to the campaign and study the behavior of malicious riders alone. Our analysis framework relies on collective repositories and recent advances on the systematization of intelligence extracted from multiple anti-virus vendors. We find that since its infancy in 2010, the Android malware ecosystem has changed significantly, both in the type of malicious activity performed by the malicious samples and in the level of obfuscation used by malware to avoid detection. We then show that our framework can aid analysts who attempt to study unknown malware families. Finally, we discuss what our findings mean for Android malware detection research, highlighting areas that need further attention by the research community.Accepted manuscrip
    • …
    corecore