1,123 research outputs found

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability

    Fog Radio Access Networks: Mobility management, interference mitigation and resource optimization

    Get PDF
    In order to make Internet connections ubiquitous and autonomous in our daily lives, maximizing the utilization of radio resources and social information is one of the major research topics in future mobile communication technologies. Fog radio access network (FRAN) is regarded as a promising paradigm for the fifth generation (5G) of mobile networks. FRAN integrates fog computing with RAN and makes full use of the edge of networks. FRAN would be different in networking, computing, storage and control as compared with conventional radio access networks (RAN) and the emerging cloud RAN. In this article, we provide a description of the FRAN architecture, and discuss how the distinctive characteristics of FRAN make it possible to efficiently alleviate the burden on the fronthaul, backhaul and backbone networks, as well as reduce content delivery latencies. We will focus on the mobility management, interference mitigation, and resource optimization in FRAN. Our simulation results show that the proposed FRAN architecture and the associated mobility and resource management mechanisms can reduce the signaling cost and increase the net utility for the RAN

    Deep Learning for Edge Computing Applications: A State-of-the-Art Survey

    Get PDF
    With the booming development of Internet-of-Things (IoT) and communication technologies such as 5G, our future world is envisioned as an interconnected entity where billions of devices will provide uninterrupted service to our daily lives and the industry. Meanwhile, these devices will generate massive amounts of valuable data at the network edge, calling for not only instant data processing but also intelligent data analysis in order to fully unleash the potential of the edge big data. Both the traditional cloud computing and on-device computing cannot sufficiently address this problem due to the high latency and the limited computation capacity, respectively. Fortunately, the emerging edge computing sheds a light on the issue by pushing the data processing from the remote network core to the local network edge, remarkably reducing the latency and improving the efficiency. Besides, the recent breakthroughs in deep learning have greatly facilitated the data processing capacity, enabling a thrilling development of novel applications, such as video surveillance and autonomous driving. The convergence of edge computing and deep learning is believed to bring new possibilities to both interdisciplinary researches and industrial applications. In this article, we provide a comprehensive survey of the latest efforts on the deep-learning-enabled edge computing applications and particularly offer insights on how to leverage the deep learning advances to facilitate edge applications from four domains, i.e., smart multimedia, smart transportation, smart city, and smart industry. We also highlight the key research challenges and promising research directions therein. We believe this survey will inspire more researches and contributions in this promising field

    Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control

    Get PDF
    In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.Comment: This article has been accepted for inclusion in a future issue of China Communications Journal in IEEE Xplor
    • …
    corecore