244 research outputs found

    Collecting, Analyzing and Predicting Socially-Driven Image Interestingness

    Get PDF
    International audienceInterestingness has recently become an emerging concept for visual content assessment. However, understanding and predicting image interestingness remains challenging as its judgment is highly subjective and usually context-dependent. In addition, existing datasets are quite small for in-depth analysis. To push forward research in this topic, a large-scale interestingness dataset (images and their associated metadata) is described in this paper and released for public use. We then propose computational models based on deep learning to predict image interestingness. We show that exploiting relevant contextual information derived from social metadata could greatly improve the prediction results. Finally we discuss some key findings and potential research directions for this emerging topic

    Semantically-enhanced recommendations in cultural heritage

    Get PDF
    In the Web 2.0 environment, institutes and organizations are starting to open up their previously isolated and heterogeneous collections in order to provide visitors with maximal access. Semantic Web technologies act as instrumental in integrating these rich collections of metadata by defining ontologies which accommodate different representation schemata and inconsistent naming conventions over the various vocabularies. Facing the large amount of metadata with complex semantic structures, it is becoming more and more important to support visitors with a proper selection and presentation of information. In this context, the Dutch Science Foundation (NWO) funded the Cultural Heritage Information Personalization (CHIP) project in early 2005, as part of the Continuous Access to Cultural Heritage (CATCH) program in the Netherlands. It is a collaborative project between the Rijksmuseum Amsterdam, the Eindhoven University of Technology and the Telematica Instituut. The problem statement that guides the research of this thesis is as follows: Can we support visitors with personalized access to semantically-enriched collections? To study this question, we chose cultural heritage (museums) as an application domain, and the semantically rich background knowledge about the museum collection provides a basis to our research. On top of it, we deployed user modeling and recommendation technologies in order to provide personalized services for museum visitors. Our main contributions are: (i) we developed an interactive rating dialog of artworks and art concepts for a quick instantiation of the CHIP user model, which is built as a specialization of FOAF and mapped to an existing event model ontology SEM; (ii) we proposed a hybrid recommendation algorithm, combining both explicit and implicit relations from the semantic structure of the collection. On the presentation level, we developed three tools for end-users: Art Recommender, Tour Wizard and Mobile Tour Guide. Following a user-centered design cycle, we performed a series of evaluations with museum visitors to test the effectiveness of recommendations using the rating dialog, different ways to build an optimal user model and the prediction accuracy of the hybrid algorithm. Chapter 1 introduces the research questions, our approaches and the outline of this thesis. Chapter 2 gives an overview of our work at the first stage. It includes (i) the semantic enrichment of the Rijksmuseum collection, which is mapped to three Getty vocabularies (ULAN, AAT, TGN) and the Iconclass thesaurus; (ii) the minimal user model ontology defined as a specialization of FOAF, which only stores user ratings at that time, (iii) the first implementation of the content-based recommendation algorithm in our first tool, the CHIP Art Recommender. Chapter 3 presents two other tools: Tour Wizard and Mobile Tour Guide. Based on the user's ratings, the Web-based Tour Wizard recommends museum tours consisting of recommended artworks that are currently available for museum exhibitions. The Mobile Tour Guide converts recommended tours to mobile devices (e.g. PDA) that can be used in the physical museum space. To connect users' various interactions with these tools, we made a conversion of the online user model stored in RDF into XML format which the mobile guide can parse, and in this way we keep the online and on-site user models dynamically synchronized. Chapter 4 presents the second generation of the Mobile Tour Guide with a real time routing system on different mobile devices (e.g. iPod). Compared with the first generation, it can adapt museum tours based on the user's ratings artworks and concepts, her/his current location in the physical museum and the coordinates of the artworks and rooms in the museum. In addition, we mapped the CHIP user model to an existing event model ontology SEM. Besides ratings, it can store additional user activities, such as following a tour and viewing artworks. Chapter 5 identifies a number of semantic relations within one vocabulary (e.g. a concept has a broader/narrower concept) and across multiple vocabularies (e.g. an artist is associated to an art style). We applied all these relations as well as the basic artwork features in content-based recommendations and compared all of them in terms of usefulness. This investigation also enables us to look at the combined use of artwork features and semantic relations in sequence and derive user navigation patterns. Chapter 6 defines the task of personalized recommendations and decomposes the task into a number of inference steps for ontology-based recommender systems, from a perspective of knowledge engineering. We proposed a hybrid approach combining both explicit and implicit recommendations. The explicit relations include artworks features and semantic relations with preliminary weights which are derived from the evaluation in Chapter 5. The implicit relations are built between art concepts based on instance-based ontology matching. Chapter 7 gives an example of reusing user interaction data generated by one application into another one for providing cross-application recommendations. In this example, user tagging about cultural events, gathered by iCITY, is used to enrich the user model for generating content-based recommendations in the CHIP Art Recommender. To realize full tagging interoperability, we investigated the problems that arise in mapping user tags to domain ontologies, and proposed additional mechanisms, such as the use of SKOS matching operators to deal with the possible mis-alignment of tags and domain-specific ontologies. We summarized to what extent the problem statement and each of the research questions are answered in Chapter 8. We also discussed a number of limitations in our research and looked ahead at what may follow as future work

    Video advertisement mining for predicting revenue using random forest

    Get PDF
    Shaken by the threat of financial crisis in 2008, industries began to work on the topic of predictive analytics to efficiently control inventory levels and minimize revenue risks. In this third-generation age of web-connected data, organizations emphasized the importance of data science and leveraged the data mining techniques for gaining a competitive edge. Consider the features of Web 3.0, where semantic-oriented interaction between humans and computers can offer a tailored service or product to meet consumers\u27 needs by means of learning their preferences. In this study, we concentrate on the area of marketing science to demonstrate the correlation between TV commercial advertisements and sales achievement. Through different data mining and machine-learning methods, this research will come up with one concrete and complete predictive framework to clarify the effects of word of mouth by using open data sources from YouTube. The uniqueness of this predictive model is that we adopt the sentiment analysis as one of our predictors. This research offers a preliminary study on unstructured marketing data for further business use

    Leveraging Mobile App Classification and User Context Information for Improving Recommendation Systems

    Get PDF
    Mobile apps play a significant role in current online environments where there is an overwhelming supply of information. Although mobile apps are part of our daily routine, searching and finding mobile apps is becoming a nontrivial task due to the current volume, velocity and variety of information. Therefore, app recommender systems provide users’ desired apps based on their preferences. However, current recommender systems and their underlying techniques are limited in effectively leveraging app classification schemes and context information. In this thesis, I attempt to address this gap by proposing a text analytics framework for mobile app recommendation by leveraging an app classification scheme that incorporates the needs of users as well as the complexity of the user-item-context information in mobile app usage pattern. In this recommendation framework, I adopt and empirically test an app classification scheme based on textual information about mobile apps using data from Google Play store. In addition, I demonstrate how context information such as user social media status can be matched with app classification categories using tree-based and rule-based prediction algorithms. Methodology wise, my research attempts to show the feasibility of textual data analysis in profiling apps based on app descriptions and other structured attributes, as well as explore mechanisms for matching user preferences and context information with app usage categories. Practically, the proposed text analytics framework can allow app developers reach a wider usage base through better understanding of user motivation and context information

    Browse-to-search

    Full text link
    This demonstration presents a novel interactive online shopping application based on visual search technologies. When users want to buy something on a shopping site, they usually have the requirement of looking for related information from other web sites. Therefore users need to switch between the web page being browsed and other websites that provide search results. The proposed application enables users to naturally search products of interest when they browse a web page, and make their even causal purchase intent easily satisfied. The interactive shopping experience is characterized by: 1) in session - it allows users to specify the purchase intent in the browsing session, instead of leaving the current page and navigating to other websites; 2) in context - -the browsed web page provides implicit context information which helps infer user purchase preferences; 3) in focus - users easily specify their search interest using gesture on touch devices and do not need to formulate queries in search box; 4) natural-gesture inputs and visual-based search provides users a natural shopping experience. The system is evaluated against a data set consisting of several millions commercial product images. © 2012 Authors
    • …
    corecore