76,018 research outputs found

    Biomarkers of coronary endothelial health: correlation with invasive measures of collateral function, flow and resistance in chronically occluded coronary arteries and the effect of recanalization

    Get PDF
    Objectives: In the presence of a chronically occluded coronary artery, the collateral circulation matures by a process of arteriogenesis; however, there is considerable variation between individuals in the functional capacity of that collateral network. This could be explained by differences in endothelial health and function. We aimed to examine the relationship between the functional extent of collateralization and levels of biomarkers that have been shown to relate to endothelial health. Methods: We measured four potential biomarkers of endothelial health in 34 patients with mature collateral networks who underwent a successful percutaneous coronary intervention (PCI) for a chronic total coronary occlusion (CTO) before PCI and 6-8 weeks after PCI, and examined the relationship of biomarker levels with physiological measures of collateralization. Results: We did not find a significant change in the systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor 6-8 weeks after PCI. We did find an association between estimated retrograde collateral flow before CTO recanalization and lower levels of sICAM-1 (r=0.39, P=0.026), sE-selectin (r=0.48, P=0.005) and microparticles (r=0.38, P=0.03). Conclusion: Recanalization of a CTO and resultant regression of a mature collateral circulation do not alter systemic levels of sICAM-1, sE-selectin, microparticles or tissue factor. The identified relationship of retrograde collateral flow with sICAM-1, sE-selectin and microparticles is likely to represent an association with an ability to develop collaterals rather than their presence and extent

    Main trends in experimental morphological research in angiology and outlook for its development

    Get PDF
    The main prospective trends in the problem of collateral circulation and new trends in experimental angiology with respect to the effect of gravitational forces, hypodynamia and hypokinesia on the vascular bed are discussed

    Microvascular dysfunction in the immediate aftermath of chronic total coronary occlusion recanalization

    Get PDF
    Objectives The aim of this study was to compare microvascular resistance under both baseline and hyperemic conditions immediately after percutaneous coronary intervention (PCI) of a chronic total occlusion (CTO) with an unobstructed reference vessel in the same patient. Background Microvascular dysfunction has been reported to be prevalent immediately after CTO PCI. However, previous studies have not made comparison with a reference vessel. Patients with a CTO may have global microvascular and/or endothelial dysfunction, making comparison with established normal values misleading. Methods After successful CTO PCI in 21 consecutive patients, coronary pressure and flow velocity were measured at baseline and hyperemia in distal segments of the CTO/target vessel and an unobstructed reference vessel. Hemodynamics including hyperemic microvascular resistance (HMR), basal microvascular resistance (BMR), and instantaneous minimal microvascular resistance at baseline and hyperemia were calculated and compared between reference and target/CTO vessels. Results After CTO PCI, BMR was reduced in the target/CTO vessel compared with the reference vessel: 3.58 mm Hg/cm/s vs 4.94 mm Hg/cm/s, difference −1.36 mm Hg/cm/s (−2.33 to −0.39, p = 0.008). We did not detect a difference in HMR: 1.82 mm Hg/cm/s vs 2.01 mm Hg/cm/s, difference −0.20 (−0.78 to 0.39, p = 0.49). Instantaneous minimal microvascular resistance correlated strongly with the length of stented segment at baseline (r = 0.63, p = 0.005) and hyperemia (r = 0.68, p = 0.002). Conclusions BMR is reduced in a recanalized CTO in the immediate aftermath of PCI compared to an unobstructed reference vessel; however, HMR appears to be preserved. A longer stented segment is associated with increased microvascular resistance

    Large Farms and Small Businesses: The difficult path toward development in rural China

    Get PDF
    The "Chinese Economic Miracle" of sustained growth since the 1970s has been thoroughly explored by many economists. So, too, has the obvious dichotomy between China's urban industrial sector and its rural agrarian economy. What has kept China's industrial development from migrating outward from its cities and into its countryside? When will the industrial revolution in Chinese agriculture begin? This paper examines a series of obstacles to the development of an industrial agricultural system in selected communities in China, contrasting government's goals for development with a realistic assessment of the economic characteristics of China's rural areas. The first section of this paper addresses the development of China's modern agricultural system, and the systems of land trading utilized by rural Chinese. The second section examines the impact of formal and informal financing on the development of rural businesses, as well as the development of a microfinance market in China's rural areas. Together, analysis of these issues demonstrates that China's government must address issues of property rights, access to capital, and social welfare if agricultural industrialization is to be encouraged

    Arteriogenesis versus angiogenesis: similarities and differences

    Get PDF
    Cardiovascular diseases account for more than half of total mortality before the age of 75 in industrialized countries. To develop therapies promoting the compensatory growth of blood vessels could be superior to palliative surgical surgical interventions. Therefore, much effort has been put into investigating underlying mechanisms. Depending on the initial trigger, growth of blood vessels in adult organisms proceeds via two major processes, angiogenesis and arteriogenesis. While angiogenesis is induced by hypoxia and results in new capillaries, arteriogenesis is induced by physical forces, most importantly fluid shear stress. Consequently, chronically elevated fluid shear stress was found to be the strongest trigger under experimental conditions. Arteriogenesis describes the remodelling of pre-existing arterio-arteriolar anastomoses to completely developed and functional arteries. In both growth processes, enlargement of vascular wall structures was proposed to be covered by proliferation of existing wall cells. Recently, increasing evidence emerges, implicating a pivotal role for circulating cells, above all blood monocytes, in vascular growth processes. Since it has been shown that monocytes/macrophage release a cocktail of chemokines, growth factors and proteases involved in vascular growth, their contribution seems to be of a paracrine fashion. A similar role is currently discussed for various populations of bone-marrow derived stem cells and endothelial progenitors. In contrast, the initial hypothesis that these cells -after undergoing a (trans-)differentiation- contribute by a structural integration into the growing vessel wall, is increasingly challenged

    The conservative treatment of thromboangiitis obiterans

    Full text link
    Thesis (M.D.)—Boston Universit

    Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction - (TOPCARE-AMI)

    Get PDF
    Background - Experimental studies suggest that transplantation of blood-derived or bone marrow–derived progenitor cells beneficially affects postinfarction remodeling. The safety and feasibility of autologous progenitor cell transplantation in patients with ischemic heart disease is unknown

    Mechanisms of Volatile Anesthetic-Induced Myocardial Protection

    Get PDF
    Volatile anesthetics protect myocardium against reversible and irreversible ischemic injury. Experimental evidence from several in vitro and in vivo animal models demonstrates that volatile agents enhance the recovery of stunned myocardium and reduce the size of myocardial infarction after brief or prolonged coronary artery occlusion and reperfusion, respectively. This protective effect persists after the anesthetic has been discontinued, a phenomenon known as anesthetic-induced preconditioning (APC). Recent clinical data also demonstrates evidence of APC in patients during cardiac surgery. Thus, administration of volatile anesthetics may represent a novel therapeutic approach that reduces morbidity and mortality associated with perioperative myocardial ischemia and infarction. The mechanisms responsible for APC appear to be similar to those implicated in ischemic preconditioning, but nonetheless have subtle differences. Accumulating evidence indicates that APC is characterized by complex signal transduction pathways that may include adenosine receptors, G proteins, protein kinase C, reactive oxygen species, and sarcolemmal or mitochondrial KATP channels. Opioid analgesics may further enhance APC as well. This article will review recent advances in the understanding of mechanisms responsible for volatile anesthetic-induced myocardial protection
    corecore