172 research outputs found

    Seed-Guided Topic Discovery with Out-of-Vocabulary Seeds

    Full text link
    Discovering latent topics from text corpora has been studied for decades. Many existing topic models adopt a fully unsupervised setting, and their discovered topics may not cater to users' particular interests due to their inability of leveraging user guidance. Although there exist seed-guided topic discovery approaches that leverage user-provided seeds to discover topic-representative terms, they are less concerned with two factors: (1) the existence of out-of-vocabulary seeds and (2) the power of pre-trained language models (PLMs). In this paper, we generalize the task of seed-guided topic discovery to allow out-of-vocabulary seeds. We propose a novel framework, named SeeTopic, wherein the general knowledge of PLMs and the local semantics learned from the input corpus can mutually benefit each other. Experiments on three real datasets from different domains demonstrate the effectiveness of SeeTopic in terms of topic coherence, accuracy, and diversity.Comment: 12 pages; Accepted to NAACL 202

    Measuring Semantic Similarity of Documents by Using Named Entity Recognition Methods

    Get PDF
    The work presented in this thesis was born from the desire to map documents with similar semantic concepts between them. We decided to address this problem as a named entity recognition task, where we have identified key concepts in the texts we use, and we have categorized them. So, we can apply named entity recognition techniques and automatically recognize these key concepts inside other documents. However, we propose the use of a classification method based on the recognition of named entities or key phrases, where the method can detect similarities between key concepts of the texts to be analyzed, and through the use of Poincaré embeddings, the model can associate the existing relationship between these concepts. Thanks to the Poincaré Embeddings’ ability to capture relationships between words, we were able to implement this feature in our classifier. Consequently for each word in a text we check if there are words close to it that are also close to the words that make up the key phrases that we use as Gold Standard. Therefore when detecting potential close words that make up a named entity, the classifier then applies a series of characteristics to classify it. The methodology used performed better than when we only considered the POS structure of the named entities and their n-grams. However, determining the POS structure and the n-grams were important to improve the recognition of named entities in our research. By improving time to recognize similar key phrases between documents, some common tasks in large companies can have a notorious benefit. An important example is the evaluation of resumes, to determine the best professional for a specific position. This task is characterized by consuming a lot of time to find the best profiles for a position, but our contribution in this research work considerably reduces that time, finding the best profiles for a job. Here the experiments are shown considering job descriptions and real resumes, and the methodology used to determine the representation of each of these documents through their key phrases is explained

    Harnessing sense-level information for semantically augmented knowledge extraction

    Get PDF
    Nowadays, building accurate computational models for the semantics of language lies at the very core of Natural Language Processing and Artificial Intelligence. A first and foremost step in this respect consists in moving from word-based to sense-based approaches, in which operating explicitly at the level of word senses enables a model to produce more accurate and unambiguous results. At the same time, word senses create a bridge towards structured lexico-semantic resources, where the vast amount of available machine-readable information can help overcome the shortage of annotated data in many languages and domains of knowledge. This latter phenomenon, known as the knowledge acquisition bottlneck, is a crucial problem that hampers the development of large-scale, data-driven approaches for many Natural Language Processing tasks, especially when lexical semantics is directly involved. One of these tasks is Information Extraction, where an effective model has to cope with data sparsity, as well as with lexical ambiguity that can arise at the level of both arguments and relational phrases. Even in more recent Information Extraction approaches where semantics is implicitly modeled, these issues have not yet been addressed in their entirety. On the other hand, however, having access to explicit sense-level information is a very demanding task on its own, which can rarely be performed with high accuracy on a large scale. With this in mind, in ths thesis we will tackle a two-fold objective: our first focus will be on studying fully automatic approaches to obtain high-quality sense-level information from textual corpora; then, we will investigate in depth where and how such sense-level information has the potential to enhance the extraction of knowledge from open text. In the first part of this work, we will explore three different disambiguation scenar- ios (semi-structured text, parallel text, and definitional text) and devise automatic disambiguation strategies that are not only capable of scaling to different corpus sizes and different languages, but that actually take advantage of a multilingual and/or heterogeneous setting to improve and refine their performance. As a result, we will obtain three sense-annotated resources that, when tested experimentally with a baseline system in a series of downstream semantic tasks (i.e. Word Sense Disam- biguation, Entity Linking, Semantic Similarity), show very competitive performances on standard benchmarks against both manual and semi-automatic competitors. In the second part we will instead focus on Information Extraction, with an emphasis on Open Information Extraction (OIE), where issues like sparsity and lexical ambiguity are especially critical, and study how to exploit at best sense-level information within the extraction process. We will start by showing that enforcing a deeper semantic analysis in a definitional setting enables a full-fledged extraction pipeline to compete with state-of-the-art approaches based on much larger (but noisier) data. We will then demonstrate how working at the sense level at the end of an extraction pipeline is also beneficial: indeed, by leveraging sense-based techniques, very heterogeneous OIE-derived data can be aligned semantically, and unified with respect to a common sense inventory. Finally, we will briefly shift the focus to the more constrained setting of hypernym discovery, and study a sense-aware supervised framework for the task that is robust and effective, even when trained on heterogeneous OIE-derived hypernymic knowledge

    Methods for improving entity linking and exploiting social media messages across crises

    Get PDF
    Entity Linking (EL) is the task of automatically identifying entity mentions in texts and resolving them to a corresponding entity in a reference knowledge base (KB). There is a large number of tools available for different types of documents and domains, however the literature in entity linking has shown the quality of a tool varies across different corpus and depends on specific characteristics of the corpus it is applied to. Moreover the lack of precision on particularly ambiguous mentions often spoils the usefulness of automated disambiguation results in real world applications. In the first part of this thesis I explore an approximation of the difficulty to link entity mentions and frame it as a supervised classification task. Classifying difficult to disambiguate entity mentions can facilitate identifying critical cases as part of a semi-automated system, while detecting latent corpus characteristics that affect the entity linking performance. Moreover, despiteless the large number of entity linking tools that have been proposed throughout the past years, some tools work better on short mentions while others perform better when there is more contextual information. To this end, I proposed a solution by exploiting results from distinct entity linking tools on the same corpus by leveraging their individual strengths on a per-mention basis. The proposed solution demonstrated to be effective and outperformed the individual entity systems employed in a series of experiments. An important component in the majority of the entity linking tools is the probability that a mentions links to one entity in a reference knowledge base, and the computation of this probability is usually done over a static snapshot of a reference KB. However, an entity’s popularity is temporally sensitive and may change due to short term events. Moreover, these changes might be then reflected in a KB and EL tools can produce different results for a given mention at different times. I investigated the prior probability change over time and the overall disambiguation performance using different KB from different time periods. The second part of this thesis is mainly concerned with short texts. Social media has become an integral part of the modern society. Twitter, for instance, is one of the most popular social media platforms around the world that enables people to share their opinions and post short messages about any subject on a daily basis. At first I presented one approach to identifying informative messages during catastrophic events using deep learning techniques. By automatically detecting informative messages posted by users during major events, it can enable professionals involved in crisis management to better estimate damages with only relevant information posted on social media channels, as well as to act immediately. Moreover I have also performed an analysis study on Twitter messages posted during the Covid-19 pandemic. Initially I collected 4 million tweets posted in Portuguese since the begining of the pandemic and provided an analysis of the debate aroud the pandemic. I used topic modeling, sentiment analysis and hashtags recomendation techniques to provide isights around the online discussion of the Covid-19 pandemic

    Enhancing Free-text Interactions in a Communication Skills Learning Environment

    Get PDF
    Learning environments frequently use gamification to enhance user interactions.Virtual characters with whom players engage in simulated conversations often employ prescripted dialogues; however, free user inputs enable deeper immersion and higher-order cognition. In our learning environment, experts developed a scripted scenario as a sequence of potential actions, and we explore possibilities for enhancing interactions by enabling users to type free inputs that are matched to the pre-scripted statements using Natural Language Processing techniques. In this paper, we introduce a clustering mechanism that provides recommendations for fine-tuning the pre-scripted answers in order to better match user inputs
    • …
    corecore