92 research outputs found

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Get PDF

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Multigroup Synchronization in 1D-Bernoulli Chaotic Collaborative CDMA

    Get PDF
    Code-division multiple access (CDMA) has played a remarkable role in the field of wireless communication systems, and its capacity and security requirements are still being addressed. Collaborative multiuser transmission and detection are a contemporary technique used in CDMA systems. The performance of these systems is governed by the proper accommodation of the users and by proper synchronization schemes. The major research concerns in the existing multiuser overloaded CDMA schemes are (i) statistically uncorrelated PN sequences that cause multiple-access interference (MAI) and (ii) the security of the user's data. In this paper, a novel grouped CDMA scheme, the 1D-Bernoulli chaotic collaborative CDMA (BCC-CDMA), is introduced, in which mutually orthogonal chaotic sequences spread the users' data within a group. The synchronization of multiple groups in this scheme has been analyzed under MAI limited environments and the results are presented. This increases the user capacity and also provides sufficient security as a result of the correlation properties possessed by the chaotic codes. Multigroup synchronization is achieved using a 1D chaotic pilot sequence generated by the Bernoulli Map. The mathematical model of the proposed system is described and compared with the theoretical model of the synchronization in CDMA, the simulation results of which are presented

    Hierarchy Based Construction of Signature Matrices for Simplified Decoding in Overloaded CDMA

    Get PDF
    The overloaded CDMA system, as the solution to the capacity limit of its conventional counterpart, has drawn frequent interest of the researchers in the past. While there exists numerous proposals on the construction of uniquely decodable (UD) signature matrices for overloaded CDMA system with very high value of overloading factor, most of them lag the efficient multiuser detector (MUD) for noisy transmission. Here, by efficient, we imply the MUD to have acceptable BER performance and simplified in design. Whereas the lack of efficiency of several MUDs is primarily due to the impact of excess level of multiple access interference (MAI) because of the rise in the number of active users, its random nature prohibits its accurate estimation and elimination. Under such constraints, if the signature matrices can be intelligently constructed so as to generate a defined and controlled pattern (hierarchy) of MAI so that the designed MUD will exploit the knowledge of this hierarchy to remove the MAI completely and attain better error performance at much lower cost of complexity. We consider this as the motivation for research in this thesis. First, we propose the ternary signature matrix with orthogonal subsets (TSMOS), where the matrix with index-k comprises of k orthogonal subsets with each having different number signatures, and all subsets besides the first (largest) one are of ternary type. The correlation (interference) pattern among the signatures is mapped into a twin tree hierarchy, which is further leveraged to design a simplified MUD using the linear decoding blocks like matched filter (MF) to provide errorfree and better error performance for noiseless and noisy transmission respectively. Next, we generalize the construction of TSMOS to multiple structures i.e.; Type I, Type II, Type III and mixed versions and reveal the complementary feature of 50% signatures of the largest (binary) subset that further results in their optimality. Further, we propose the non-ternary version of SMOS (called as 2k-SMOS), where the binary alphabets in each of the k subsets are different from each other. With vii no complementary feature, 50% signatures of its largest subset are also found to be optimal. The superiority of 2k-SMOS over TSMOS is also verified for an overloading capacity of 150%. Next, we propose and discuss the hybrid SMOS (HSMOS), where the subsets from TSMOS and 2k-SMOS are used as the constituents to produce multiple SMOS structures, of which TSMOS and 2k-SMOS are treated as the special cases. For better understanding of the features of the whole family of SMOS (with an overloading capacity of 200%), the gradual change in the twin tree hierarchy and BER performance of the left and right child of the individual subsets are studied. Similar to SMOS, we also introduce the hierarchy based low density signature (HLDS) matrix, where any UD matrix satisfying particular criterion can be considered as the basis set. For hadamard matrix as the basis set, we design a MUD that uses the MF to implement the decision vector search (DVS) algorithm, which is meant to exploit the advantageous hierarchy of constellation of the transmitted vector to offer errorfree decoding. For noisy channel, the marginal degradation in the level of BER of the MUD (DVS) as compared to the optimum joint maximum likelihood decoder (MLD) is worthy to be overlooked when compared with the significant gain achieved in terms of complexity. For the smallest dimension of the hadamard matrix as the basis, the MUD is further simplified to offer recovery using a comparison driven decision making algorithm, also known as comparison aided decoding (CAD). Despite simplicity, the error performance of the MUD (CAD) is observed to be very close to that of MUD (DVS)

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Implementation of New Multiple Access Technique Encoder for 5G Wireless Telecomunication Networks

    Get PDF
    RÉSUMÉ Les exigences de la connectivité mobile massive de différents appareils et de diverses applications déterminent les besoins des prochaines générations de technologies mobiles (5G) afin de surmonter les demandes futures. L'expansion significative de la connectivité et de la densité du trafic caractérisent les besoins de la cinquième génération de réseaux mobiles. Par conséquent, pour la 5G, il est nécessaire d'avoir une densité de connectivité beaucoup plus élevée et une plus grande portée de mobilité, un débit beaucoup plus élevé et une latence beaucoup plus faible. En raison de l'exigence d'une connectivité massive, de nombreuses nouvelles technologies doivent être améliorées: le codage des canaux, la technique d'accès multiple, la modulation et la diversité, etc. Par conséquent, compte tenu de l'environnement 5G, surcoût de signalisation et de la latence devrait être pris en compte [1]. En outre, l'application de la virtualisation des accès sans fil (WAV) devrait également être considérée et, par conséquent, il est également nécessaire de concevoir la plate-forme matérielle prenant en charge les nouvelles normes pour la mise en œuvre des émetteurs-récepteurs virtuels. L'une des nouvelles technologies possibles pour la 5G est l'accès multiple pour améliorer le débit. Par conséquent, au lieu d'OFDMA utilisé dans la norme LTE (4G), l'application d'une nouvelle technique d'accès multiple appelée Sparse Code Multiple Access (SCMA) est investiguée dans cette dissertation. SCMA est une nouvelle technique d'accès multiple non orthogonale du domaine fréquentiel proposée pour améliorer l'efficacité spectrale de l'accès radio sans fil [2]. L'encodage SCMA est l'un des algorithmes les plus simples dans les techniques d'accès multiple qui offre l'opportunité d'expérimenter des méthodes génériques de mise en oeuvre. En outre, la nouvelle méthode d'accès multiple est supposée fournir un débit plus élevé. Le choix du codage SCMA avec moins de complexité pourrait être une approche appropriée. La cible fixée pour cette recherche était d'atteindre un débit d’encodage de plus de 1 Gbps pour le codeur SCMA. Les implémentations de codage SCMA ont été effectuées à la fois en logiciel et en matériel pour permettre de les comparer. Les implémentations logicielles ont été développées avec le langage de programmation C. Parmi plusieurs conceptions, la performance a été améliorée en utilisant différentes méthodes pour augmenter le parallélisme, diminuer la complexité de calcul et par conséquent le temps de traitement.----------ABSTRACT The demands of massive mobile connectivity of different devices and diverse applications at the same time set requirments for next generations of mobile technology (5G). The significant expansion of connectivity and traffic density characterize the requirements of fifth generation mobile. Therefore, in 5G, there is a need to have much higher connectivity density, higher mobility ranges, much higher throughput, and much lower latency. In pursuance of the requirement of massive connectivity, numerous technologies must be improved: channel coding, multiple access technique, modulation and diversity, etc. For instance, with 5G, the cost of signaling overhead and latency should be taken into account [1]. Besides, applying wireless access virtualization (WAV) should be considered and there is also a need to have effective implementations supporting novel virtual transceiver. One of the possible new technologies for 5G is exploiting multiple access techniques to improve throughput. Therefore, instead of OFDMA in LTE (4G), applying a new multiple access technique called Sparse Code Multiple Access (SCMA) is an approach considered in this dissertation. SCMA is a new frequency domain non-orthogonal multiple access technique proposed to improve spectral efficiency of wireless radio access [2]. SCMA encoding is one of the simplest multiple access technique that offers an opportunity to experiment generic implementation methods. In addition, the new multiple access method is supposed to provide higher throughput, thus choosing SCMA encoding with less complexity could be an appropriate approach. The target with SCMA was to achieve an encoding throughput of more that 1Gbps. SCMA encoding implementations were done both in software and hardware to allow comparing them. The software implementations were developed with the C programing language. Among several designs, the performance was improved by using different methods to increase parallelism, decrease the computational complexity and consequently the processing time. The best achieved results with software implementations offer a 3.59 Gbps throughput, which is 3.5 times more that the target. For hardware implementation, high level synthesis was experimented. In order to do that, the C based functions and testbenches which were developed for software implementations, were used as inputs to Vivado HLS
    corecore