444 research outputs found

    Collaborative creativity with Monte-Carlo Tree Search and Convolutional Neural Networks

    Get PDF
    We investigate a human-machine collaborative drawing environment in which an autonomous agent sketches images while optionally allowing a user to directly influence the agent's trajectory. We combine Monte Carlo Tree Search with image classifiers and test both shallow models (e.g. multinomial logistic regression) and deep Convolutional Neural Networks (e.g. LeNet, Inception v3). We found that using the shallow model, the agent produces a limited variety of images, which are noticably recogonisable by humans. However, using the deeper models, the agent produces a more diverse range of images, and while the agent remains very confident (99.99%) in having achieved its objective, to humans they mostly resemble unrecognisable 'random' noise. We relate this to recent research which also discovered that 'deep neural networks are easily fooled' \cite{Nguyen2015} and we discuss possible solutions and future directions for the research

    Deep Visual Instruments: Realtime Continuous, Meaningful Human Control over Deep Neural Networks for Creative Expression

    Get PDF
    In this thesis, we investigate Deep Learning models as an artistic medium for new modes of performative, creative expression. We call these Deep Visual Instruments: realtime interactive generative systems that exploit and leverage the capabilities of state-of-the-art Deep Neural Networks (DNN), while allowing Meaningful Human Control, in a Realtime Continuous manner. We characterise Meaningful Human Control in terms of intent, predictability, and accountability; and Realtime Continuous Control with regards to its capacity for performative interaction with immediate feedback, enhancing goal-less exploration. The capabilities of DNNs that we are looking to exploit and leverage in this manner, are their ability to learn hierarchical representations modelling highly complex, real-world data such as images. Thinking of DNNs as tools that extract useful information from massive amounts of Big Data, we investigate ways in which we can navigate and explore what useful information a DNN has learnt, and how we can meaningfully use such a model in the production of artistic and creative works, in a performative, expressive manner. We present five studies that approach this from different but complementary angles. These include: a collaborative, generative sketching application using MCTS and discriminative CNNs; a system to gesturally conduct the realtime generation of text in different styles using an ensemble of LSTM RNNs; a performative tool that allows for the manipulation of hyperparameters in realtime while a Convolutional VAE trains on a live camera feed; a live video feed processing software that allows for digital puppetry and augmented drawing; and a method that allows for long-form story telling within a generative model's latent space with meaningful control over the narrative. We frame our research with the realtime, performative expression provided by musical instruments as a metaphor, in which we think of these systems as not used by a user, but played by a performer

    Questioning the impact of AI and interdisciplinarity in science: Lessons from COVID-19

    Full text link
    Artificial intelligence (AI) has emerged as one of the most promising technologies to support COVID-19 research, with interdisciplinary collaborations between medical professionals and AI specialists being actively encouraged since the early stages of the pandemic. Yet, our analysis of more than 10,000 papers at the intersection of COVID-19 and AI suggest that these collaborations have largely resulted in science of low visibility and impact. We show that scientific impact was not determined by the overall interdisciplinarity of author teams, but rather by the diversity of knowledge they actually harnessed in their research. Our results provide insights into the ways in which team and knowledge structure may influence the successful integration of new computational technologies in the sciences

    From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI

    Get PDF
    This paper reviews the field of Game AI, which not only deals with creating agents that can play a certain game, but also with areas as diverse as creating game content automatically, game analytics, or player modelling. While Game AI was for a long time not very well recognized by the larger scientific community, it has established itself as a research area for developing and testing the most advanced forms of AI algorithms and articles covering advances in mastering video games such as StarCraft 2 and Quake III appear in the most prestigious journals. Because of the growth of the field, a single review cannot cover it completely. Therefore, we put a focus on important recent developments, including that advances in Game AI are starting to be extended to areas outside of games, such as robotics or the synthesis of chemicals. In this article, we review the algorithms and methods that have paved the way for these breakthroughs, report on the other important areas of Game AI research, and also point out exciting directions for the future of Game AI

    Neuroevolution in Games: State of the Art and Open Challenges

    Get PDF
    This paper surveys research on applying neuroevolution (NE) to games. In neuroevolution, artificial neural networks are trained through evolutionary algorithms, taking inspiration from the way biological brains evolved. We analyse the application of NE in games along five different axes, which are the role NE is chosen to play in a game, the different types of neural networks used, the way these networks are evolved, how the fitness is determined and what type of input the network receives. The article also highlights important open research challenges in the field.Comment: - Added more references - Corrected typos - Added an overview table (Table 1
    corecore