580 research outputs found

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Cluster Juggler - PC cluster virtual reality

    Get PDF
    Interactive computer graphics are being used as a routine tool in many disciplines, and there is a growing demand to move these interactive tools into immersive environments as technology advances. Immersive environments (or virtual reality) require highly specialized equipment and skilled technical people to develop the applications and operate the systems. These requirements prevent the widespread acceptance of visual reality in research and industrial communities. Our work aims to bring virtual reality to a level that allows these groups with basic technical computer skills and limited resources to use this technology. To reach this goal, this work focuses on taking advantage of recent advances in commodity hardware and low-end graphics systems to create a development framework for virtual reality applications. To achieve this, we have designed a software system that enables a cluster of PCs or low-end workstations to replace a large shared-memory computer as the driving system for complex virtual reality environments. This software system, Cluster Juggler, is implemented as an extension to the virtual reality software VR Juggler. We have tested our software on a cluster VR system to ensure the performance is adequate for running VR applications. Using actual VR applications, we compared the performance of our cluster system with the performance of a VR system driven by a specialized shared-memory computer and found comparable results between the two. With Cluster Juggler we provide the ability for developers with basic technical experience to develop and run virtual reality applications on commodity hardware. In doing so, we aim to make virtual reality more accessible and affordable to all areas of research.

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    The usage of fully immersive head-mounted displays in social everyday contexts

    Get PDF
    Technology often evolves from decades of research in university and industrial laboratories and changes people's lives when it becomes available to the masses. In the interaction between technology and consumer, established designs in the laboratory environment must be adapted to the needs of everyday life. This paper deals with the challenges arising from the development of fully immersive Head Mounted Displays (HMD) in laboratories towards their application in everyday contexts. Research on virtual reality (VR) technologies spans over 50 years and covers a wide field of topics, e.g., technology, system design, user interfaces, user experience or human perception. Other disciplines such as psychology or the teleoperation of robots are examples for users of VR technology. The work in the previous examples was mainly carried out in laboratories or highly specialized environments. The main goal was to generate systems that are ideal for a single user to conduct a particular task in VR. The new emerging environments for the use of HMDs range from private homes to offices to convention halls. Even in public spaces such as public transport, cafĂ©s or parks, immersive experiences are possible. However, current VR systems are not yet designed for these environments. Previous work on problems in the everyday environment deals with challenges such as preventing the user from colliding with a physical object. However, current research does not take into account the new social context for an HMD user associated with these environments. Several people who have different roles are around the user in these contexts. In contrast to laboratory scenarios, the non-HMD user, for example, does not share the task with or is aware of the state of the HMD user in VR. This thesis contributes to the challenges introduced by the social context. For this purpose I offer solutions to overcome the visual separation of the HMD user. I also suggest methods for investigating and evaluating the use of HMDs suitable for everyday context. First, we present concepts and insights to overcome the challenges arising from an HMD covering the user's face. In the private context, e.g., living rooms, one of the main challenges is the need for an HMD user to take off the HMD to be able to communicate with others. Reasons for taking off the HMD are the visual exclusion of the surrounding world for HMD users and the HMD covering the users' face, hindering communication. Additionally, the Non-HMD users do not know about the virtual world the HMD user is acting in. Previous work suggests to visualize the bystanding Non-HMD user or its actions in VR to address such challenges. The biggest advantage of a fully immersive experience, however, is the full separation from the physical surrounding with the ultimate goal of being at another place. Therefore I argue not to integrate a non-HMD users directly into VR. I introduce the approach of using a shared surface that provides a common basis for information and interaction between a non-HMD and a HMD user. Such a surface can be utilized by using a smartphone. The same information is presented to the HMD in VR and the Non-HMD user on the shared surface in the same physical position, enabling joint interaction at the surface. By examining four feedback modalities, we provide design guidelines for touch interaction. The guidelines support interaction design with such a shared surface by an HMD user. Further, we explore the possibility to inform the Non-HMD user about the user's state during a mixed presence collaboration, e.g., if the HMD user is inattentive to the real world. For this purpose I use a frontal display attached to the HMD. In particular we explore the challenges of disturbed socialness and reduced collaboration quality, by presenting the users state on the front facing display. In summary, our concepts and studies explore the application of a shared surface to overcome challenges in a co-located mixed presence collaboration. Second, we look at the challenges of using HMDs in a public environment that have not yet been considered. The use of HMDs in these environments is becoming a reality due to the current development of HMDs, which contain all necessary hardware in one portable device. Related work, in particular, the work on public displays, already addresses the interaction with technology in public environments. The form factor of the HMD, the need to take an HMD onto the head and especially the visual and mental exclusion of the HMD user are new and not yet understood challenges in these environments. We propose a problem space for semi-public (e.g., conference rooms) and public environments (e.g., market places). With an explorative field study, we gain insight into the effects of the visual and physical separation of an HMD user from surrounding Non-HMD users. Further, we present a method that helps to design and evaluate the unsupervised usage of HMDs in public environments, the \emph{audience funnel flow model for HMDs}. Third, we look into methods that are suitable to monitor and evaluate HMD-based experiences in the everyday context. One core measure is the experience of being present in the virtual world, i.e., the feeling of ``being there''. Consumer-grade HMDs are already able to create highly immersive experiences, leading to a strong presence experience in VR. Hence we argue it is important to find and understand the remaining disturbances during the experience. Existing methods from the laboratory context are either not precise enough, e.g, questionnaires, to find these disturbances or cause high effort in their application and evaluation, e.g., physiological measures. In a literature review, we show that current research heavily relies on questionnaire-based approaches. I improve current qualitative approaches -- interviews, questionnaires -- to make the temporal variation of a VR experience assessable. I propose a drawing method that recognizes breaks in the presence experience. Also, it helps the user in reflecting an HMD-based experience and supports the communication between an interviewer and the HMD user. In the same paper, we propose a descriptive model that allows the objective description of the temporal variations of a presence experience from beginning to end. Further, I present and explore the concept of using electroencephalography to detect an HMD user's visual stress objectively. Objective detection supports the usage of HMDs in private and industrial contexts, as it ensures the health of the user. With my work, I would like to draw attention to the new challenges when using virtual reality technologies in everyday life. I hope that my concepts, methods and evaluation tools will serve research and development on the usage of HMDs. In particular, I would like to promote the use in the everyday social context and thereby create an enriching experience for all.Technologie entwickelt sich oft aus jahrzehntelanger Forschung in UniversitĂ€ts- und Industrielabors und verĂ€ndert das Leben der Menschen, wenn sie fĂŒr die Masse verfĂŒgbar wird. Im Zusammenspiel von Technik und Konsument mĂŒssen im Laborumfeld etablierte Designs an die BedĂŒrfnisse des Alltags angepasst werden. Diese Arbeit beschĂ€ftigt sich mit den Herausforderungen, die sich aus der Entwicklung voll immersiver Head Mounted Displays (HMD) in Labors, hin zu ihrer Anwendung im tĂ€glichen Kontext ergeben. Die Forschung zu Virtual-Reality-Technologien erstreckt sich ĂŒber mehr als 50 Jahre und deckt ein breites Themenspektrum ab, wie zum Beispiel Technologie, Systemdesign, BenutzeroberflĂ€chen, Benutzererfahrung oder menschliche Wahrnehmung. Andere Disziplinen wie die Psychologie oder die Teleoperation von Robotern sind Beispiele fĂŒr Anwender von VR Technologie. in der Vergangenheit Arbeiten wurden Arbeiten mit VR Systemen ĂŒberwiegend in Labors oder hochspezialisierten Umgebungen durchgefĂŒhrt. Der Großteil dieser Arbeiten zielte darauf ab, Systeme zu generieren, die fĂŒr einen einzigen Benutzer ideal sind, um eine bestimmte Aufgabe in VR durchzufĂŒhren. Die neu aufkommenden Umgebungen fĂŒr den Einsatz von HMDs reichen vom privaten Haushalt ĂŒber BĂŒros bis hin zu KongresssĂ€len. Auch in öffentlichen RĂ€umen wie öffentlichen Verkehrsmitteln, CafĂ©s oder Parks sind immersive Erlebnisse möglich. Allerdings sind die aktuellen VR Systeme noch nicht fĂŒr diese Umgebungen ausgelegt. Vorangegangene Arbeiten zu den Problemen im Alltags Umfeld befassen sich daher mit Herausforderungen, wie der Vermeidung von Kollisionen des Benutzers mit einem physischen Objekt. Die aktuelle Forschung berĂŒcksichtigt allerdings nicht den neuen sozialen Kontext fĂŒr einen HMD-Anwender, der mit den Alltagsumgebungen verbunden ist. Mehrere Personen, die unterschiedliche Rollen haben, sind in diesen Kontexten um den Benutzer herum. Im Gegensatz zu Szenarien im Labor teilt der Nicht-HMD-Benutzer beispielsweise nicht die Aufgabe und ist sich nicht ĂŒber den Zustand des HMD-Benutzers in VR bewusst. Diese Arbeit trĂ€gt zu den Herausforderungen bei, die durch den sozialen Kontext eingefĂŒhrt werden. Zu diesem Zweck bieten ich in meiner Arbeit Lösungen an, um die visuelle Abgrenzung des HMD-Anwenders zu ĂŒberwinden. Ich schlage zudem Methoden zur Untersuchung und Bewertung des Einsatzes von HMDs in öffentlichen Bereichen vor. Zuerst prĂ€sentieren wir Konzepte und Erkenntnisse, um die Herausforderungen zu meistern, die sich durch das HMD ergeben, welches das Gesicht des Benutzers abdeckt. Im privaten Bereich, z.B. in Wohnzimmern, ist eine der grĂ¶ĂŸten Herausforderungen die Notwendigkeit, dass der HMD-Nutzer das HMD abnimmt, um mit anderen kommunizieren zu können. GrĂŒnde fĂŒr das Abnehmen des HMDs sind die visuelle Ausgrenzung der Umgebung fĂŒr die HMD-Anwender und das HMD selbst, welches das Gesicht des Anwenders bedeckt und die Kommunikation behindert. DarĂŒber hinaus wissen die Nicht-HMD-Benutzer nichts ĂŒber die virtuelle Welt, in der der HMD-Benutzer handelt. Bisherige Konzepte schlugen vor, den Nicht-HMD-Benutzer oder seine Aktionen in VR zu visualisieren, um diese Herausforderungen zu adressieren. Der grĂ¶ĂŸte Vorteil einer völlig immersiven Erfahrung ist jedoch die vollstĂ€ndige Trennung der physischen Umgebung mit dem ultimativen Ziel, an einem anderen Ort zu sein. Daher schlage ich vor die Nicht-HMD-Anwender nicht direkt in VR einzubinden. Stattdessen stelle ich den Ansatz der Verwendung einer geteilten OberflĂ€che vor, die eine gemeinsame Grundlage fĂŒr Informationen und Interaktion zwischen einem Nicht-HMD und einem HMD-Benutzer bietet. Eine geteile OberflĂ€che kann etwa durch die Verwendung eines Smartphones realisiert werden. Eine solche OberflĂ€che prĂ€sentiert dem HMD und dem Nicht-HMD-Benutzer an der gleichen physikalischen Position die gleichen Informationen. Durch die Untersuchung von vier FeedbackmodalitĂ€ten stellen wir Designrichtlinien zur Touch-Interaktion zur VerfĂŒgung. Die Richtlinien ermöglichen die Interaktion mit einer solchen geteilten OberflĂ€che durch einen HMD-Anwender ermöglichen. Weiterhin untersuchen wir die Möglichkeit, den Nicht-HMD-Benutzer wĂ€hrend einer Zusammenarbeit ĂŒber den Zustand des HMD Benutzers zu informieren, z.B., wenn der HMD Nutzer gegenĂŒber der realen Welt unachtsam ist. Zu diesem Zweck schlage ich die Verwendung eines frontseitigen Displays, das an dem HMD angebracht ist. ZusĂ€tzlich bieten unsere Studien Einblicke, die den Designprozess fĂŒr eine lokale, gemischt prĂ€sente Zusammenarbeit unterstĂŒtzen. Zweitens betrachten wir die bisher unberĂŒcksichtigten Herausforderungen beim Einsatz von HMDs im öffentlichen Umfeld. Ein Nutzung von HMDs in diesen Umgebungen wird durch die aktuelle Entwicklung von HMDs, die alle notwendige Hardware in einem tragbaren GerĂ€t enthalten, zur RealitĂ€t. Verwandte Arbeiten, insbesondere aus der Forschung an Public Displays, befassen sich bereits mit der Nutzung von Display basierter Technologien im öffentlichen Kontext. Der Formfaktor des HMDs, die Notwendigkeit ein HMD auf den Kopf zu Ziehen und vor allem die visuelle und mentale Ausgrenzung des HMD-Anwenders sind neue und noch nicht verstanden Herausforderung in diesen Umgebungen. Ich schlage einen Design Space fĂŒr halböffentliche (z.B. KonferenzrĂ€ume) und öffentliche Bereiche (z.B. MarktplĂ€tze) vor. Mit einer explorativen Feldstudie gewinnen wir Einblicke in die Auswirkungen der visuellen und physischen Trennung eines HMD-Anwenders von umliegenden Nicht-HMD-Anwendern. Weiterhin stellen wir eine Methode vor, die unterstĂŒtzt, den unbeaufsichtigten Einsatz von HMDs in öffentlichen Umgebungen zu entwerfen und zu bewerten, das \emph{audience funnel flow model for HMDs}. Drittens untersuchen wir Methoden, die geeignet sind, HMD-basierte Erfahrungen im Alltagskontext zu ĂŒberwachen und zu bewerten. Eine zentrale MessgrĂ¶ĂŸe ist die Erfahrung der PrĂ€senz in der virtuellen Welt, d.h. das GefĂŒhl des "dort seins". HMDs fĂŒr Verbraucher sind bereits in der Lage, hoch immersive Erlebnisse zu schaffen, was zu einer starken PrĂ€senzerfahrung im VR fĂŒhrt. Daher argumentieren wir, dass es wichtig ist, die verbleibenden Störungen wĂ€hrend der Erfahrung zu finden und zu verstehen. Bestehende Methoden aus dem Laborkontext sind entweder nicht prĂ€zise genug, z.B. Fragebögen, um diese Störungen zu finden oder verursachen einen hohen Aufwand in ihrer Anwendung und Auswertung, z.B. physilogische Messungen. In einer LiteraturĂŒbersicht zeigen wir, dass die aktuelle Forschung stark auf fragebogenbasierte AnsĂ€tze angewiesen ist. Ich verbessern aktuelle qualitative AnsĂ€tze -- Interviews, Fragebögen -- um die zeitliche Variation einer VR-Erfahrung bewertbar zu machen. Ich schlagen eine Zeichnungsmethode vor die BrĂŒche in der PrĂ€senzerfahrung erkennt, den Benutzer bei der Reflexion einer HMD-basierten Erfahrung hilft und die Kommunikation zwischen einem Interviewer und dem HMD-Benutzer unterstĂŒtzt. In der gleichen Veröffentlichung schlage ich ein Modell vor, das die objektive Beschreibung der zeitlichen Variationen einer PrĂ€senzerfahrung von Anfang bis Ende ermöglicht. Weiterhin prĂ€sentieren und erforschen ich das Konzept der Elektroenzephalographie, um den visuellen Stress eines HMD-Anwenders objektiv zu erfassen. Die objektive Erkennung unterstĂŒtzt den Einsatz von HMDs im privaten und industriellen Kontext, da sie die Gesundheit des Benutzers sicherstellt. Mit meiner Arbeit möchte ich auf die neuen Herausforderungen beim Einsatz von VR-Technologien im Alltag aufmerksam machen. Ich hoffe, dass meine Konzepte, Methoden und Evaluierungswerkzeuge der Forschung und Entwicklung ĂŒber den Einsatz von HMDs dienen werden. Insbesondere möchte ich den Einsatz im alltĂ€glichen sozialen Kontext fördern und damit eine bereichernde Erfahrung fĂŒr alle schaffen

    Virtual reality interfaces for seamless interaction with the physical reality

    Get PDF
    In recent years head-mounted displays (HMDs) for virtual reality (VR) have made the transition from research to consumer product, and are increasingly used for productive purposes such as 3D modeling in the automotive industry and teleconferencing. VR allows users to create and experience real-world like models of products; and enables users to have an immersive social interaction with distant colleagues. These solutions are a promising alternative to physical prototypes and meetings, as they require less investment in time and material. VR uses our visual dominance to deliver these experiences, making users believe that they are in another reality. However, while their mind is present in VR their body is in the physical reality. From the user’s perspective, this brings considerable uncertainty to the interaction. Currently, they are forced to take off their HMD in order to, for example, see who is observing them and to understand whether their physical integrity is at risk. This disrupts their interaction in VR, leading to a loss of presence – a main quality measure for the success of VR experiences. In this thesis, I address this uncertainty by developing interfaces that enable users to stay in VR while supporting their awareness of the physical reality. They maintain this awareness without having to take off the headset – which I refer to as seamless interaction with the physical reality. The overarching research vision that guides this thesis is, therefore, to reduce this disconnect between the virtual and physical reality. My research is motivated by a preliminary exploration of user uncertainty towards using VR in co-located, public places. This exploration revealed three main foci: (a) security and privacy, (b) communication with physical collaborators, and (c) managing presence in both the physical and virtual reality. Each theme represents a section in my dissertation, in which I identify central challenges and give directions towards overcoming them as have emerged from the work presented here. First, I investigate security and privacy in co-located situations by revealing to what extent bystanders are able to observe general tasks. In this context, I explicitly investigate the security considerations of authentication mechanisms. I review how existing authentication mechanisms can be transferred to VR and present novel approaches that are more usable and secure than existing solutions from prior work. Second, to support communication between VR users and physical collaborators, I add to the field design implications for VR interactions that enable observers to choose opportune moments to interrupt HMD users. Moreover, I contribute methods for displaying interruptions in VR and discuss their effect on presence and performance. I also found that different virtual presentations of co-located collaborators have an effect on social presence, performance and trust. Third, I close my thesis by investigating methods to manage presence in both the physical and virtual realities. I propose systems and interfaces for transitioning between them that empower users to decide how much they want to be aware of the other reality. Finally, I discuss the opportunity to systematically allocate senses to these two realities: the visual one for VR and the auditory and haptic one for the physical reality. Moreover, I provide specific design guidelines on how to use these findings to alert VR users about physical borders and obstacles.In den letzten Jahren haben Head-Mounted-Displays (HMDs) fĂŒr virtuelle RealitĂ€t (VR) den Übergang von der Forschung zum Konsumprodukt vollzogen und werden zunehmend fĂŒr produktive Zwecke, wie 3D-Modellierung in der Automobilindustrie oder Telekonferenzen, eingesetzt. VR ermöglicht es den Benutzern, schnell und kostengĂŒnstig, Prototypen zu erstellen und erlaubt eine immersive soziale Interaktion mit entfernten Kollegen. VR nutzt unsere visuelle Dominanz, um diese Erfahrungen zu vermitteln und gibt Benutzern das GefĂŒhl sich in einer anderen RealitĂ€t zu befinden. WĂ€hrend der Nutzer jedoch in der virtuellen RealitĂ€t mental prĂ€sent ist, befindet sich der Körper weiterhin in der physischen RealitĂ€t. Aus der Perspektive des Benutzers bringt dies erhebliche Unsicherheit in die Nutzung von HMDs. Aktuell sind Nutzer gezwungen, ihr HMD abzunehmen, um zu sehen, wer sie beobachtet und zu verstehen, ob ihr körperliches Wohlbefinden gefĂ€hrdet ist. Dadurch wird ihre Interaktion in der VR gestört, was zu einem Verlust der PrĂ€senz fĂŒhrt - ein HauptqualitĂ€tsmaß fĂŒr den Erfolg von VR-Erfahrungen. In dieser Arbeit befasse ich mich mit dieser Unsicherheit, indem ich Schnittstellen entwickle, die es den Nutzern ermöglichen, in VR zu bleiben und gleichzeitig unterstĂŒtzen sie die Wahrnehmung fĂŒr die physische RealitĂ€t. Sie behalten diese Wahrnehmung fĂŒr die physische RealitĂ€t bei, ohne das Headset abnehmen zu mĂŒssen - was ich als nahtlose Interaktion mit der physischen RealitĂ€t bezeichne. Daher ist eine ĂŒbergeordenete Vision von meiner Forschung diese Trennung von virtueller und physicher RealitĂ€t zu reduzieren. Meine Forschung basiert auf einer einleitenden Untersuchung, die sich mit der Unsicherheit der Nutzer gegenĂŒber der Verwendung von VR an öffentlichen, geteilten Orten befasst. Im Kontext meiner Arbeit werden RĂ€ume oder FlĂ€chen, die mit anderen ortsgleichen Menschen geteilt werden, als geteilte Orte bezeichnet. Diese Untersuchung ergab drei Hauptschwerpunkte: (1) Sicherheit und PrivatsphĂ€re, (2) Kommunikation mit physischen Kollaborateuren, und (3) Umgang mit der PrĂ€senz, sowohl in der physischen als auch in der virtuellen RealitĂ€t. Jedes Thema stellt einen Fokus in meiner Dissertation dar, in dem ich zentrale Herausforderungen identifiziere und LösungsansĂ€tze vorstelle. Erstens, untersuche ich Sicherheit und PrivatsphĂ€re an öffentlichen, geteilten Orten, indem ich aufdecke, inwieweit Umstehende in der Lage sind, allgemeine Aufgaben zu beobachten. In diesem Zusammenhang untersuche ich explizit die Gestaltung von Authentifizierungsmechanismen. Ich untersuche, wie bestehende Authentifizierungsmechanismen auf VR ĂŒbertragen werden können, und stelle neue AnsĂ€tze vor, die nutzbar und sicher sind. Zweitens, um die Kommunikation zwischen HMD-Nutzern und Umstehenden zu unterstĂŒtzen, erweitere ich das Forschungsfeld um VR-Interaktionen, die es Beobachtern ermöglichen, gĂŒnstige Momente fĂŒr die Unterbrechung von HMD-Nutzern zu wĂ€hlen. DarĂŒber hinaus steuere ich Methoden zur Darstellung von Unterbrechungen in VR bei und diskutiere ihre Auswirkungen auf PrĂ€senz und Leistung von Nutzern. Meine Arbeit brachte auch hervor, dass verschiedene virtuelle PrĂ€sentationen von ortsgleichen Kollaborateuren einen Effekt auf die soziale PrĂ€senz, Leistung und Vertrauen haben. Drittens, schließe ich meine Dissertation mit der Untersuchung von Methoden zur Verwaltung der PrĂ€senz, sowohl in der physischen als auch in der virtuellen RealitĂ€t ab. Ich schlage Systeme und Schnittstellen fĂŒr den Übergang zwischen den RealitĂ€ten vor, die die Benutzer in die Lage versetzen zu entscheiden, inwieweit sie sich der anderen RealitĂ€t bewusst sein wollen. Schließlich diskutiere ich die Möglichkeit, diesen beiden RealitĂ€ten systematisch Sinne zuzuordnen: die visuelle fĂŒr VR und die auditive und haptische fĂŒr die physische RealitĂ€t. DarĂŒber hinaus stelle ich spezifische Design-Richtlinien zur VerfĂŒgung, wie diese Erkenntnisse genutzt werden können, um VR-Anwender auf physische Grenzen und Hindernisse aufmerksam zu machen
    • 

    corecore