2,832 research outputs found

    Lifetime Improvement in Wireless Sensor Networks via Collaborative Beamforming and Cooperative Transmission

    Full text link
    Collaborative beamforming (CB) and cooperative transmission (CT) have recently emerged as communication techniques that can make effective use of collaborative/cooperative nodes to create a virtual multiple-input/multiple-output (MIMO) system. Extending the lifetime of networks composed of battery-operated nodes is a key issue in the design and operation of wireless sensor networks. This paper considers the effects on network lifetime of allowing closely located nodes to use CB/CT to reduce the load or even to avoid packet-forwarding requests to nodes that have critical battery life. First, the effectiveness of CB/CT in improving the signal strength at a faraway destination using energy in nearby nodes is studied. Then, the performance improvement obtained by this technique is analyzed for a special 2D disk case. Further, for general networks in which information-generation rates are fixed, a new routing problem is formulated as a linear programming problem, while for other general networks, the cost for routing is dynamically adjusted according to the amount of energy remaining and the effectiveness of CB/CT. From the analysis and the simulation results, it is seen that the proposed method can reduce the payloads of energy-depleting nodes by about 90% in the special case network considered and improve the lifetimes of general networks by about 10%, compared with existing techniques.Comment: Invited paper to appear in the IEE Proceedings: Microwaves, Antennas and Propagation, Special Issue on Antenna Systems and Propagation for Future Wireless Communication

    PSA: The Packet Scheduling Algorithm for Wireless Sensor Networks

    Full text link
    The main cause of wasted energy consumption in wireless sensor networks is packet collision. The packet scheduling algorithm is therefore introduced to solve this problem. Some packet scheduling algorithms can also influence and delay the data transmitting in the real-time wireless sensor networks. This paper presents the packet scheduling algorithm (PSA) in order to reduce the packet congestion in MAC layer leading to reduce the overall of packet collision in the system The PSA is compared with the simple CSMA/CA and other approaches using network topology benchmarks in mathematical method. The performances of our PSA are better than the standard (CSMA/CA). The PSA produces better throughput than other algorithms. On other hand, the average delay of PSA is higher than previous works. However, the PSA utilizes the channel better than all algorithms

    An Energy Balanced Dynamic Topology Control Algorithm for Improved Network Lifetime

    Full text link
    In wireless sensor networks, a few sensor nodes end up being vulnerable to potentially rapid depletion of the battery reserves due to either their central location or just the traffic patterns generated by the application. Traditional energy management strategies, such as those which use topology control algorithms, reduce the energy consumed at each node to the minimum necessary. In this paper, we use a different approach that balances the energy consumption at each of the nodes, thus increasing the functional lifetime of the network. We propose a new distributed dynamic topology control algorithm called Energy Balanced Topology Control (EBTC) which considers the actual energy consumed for each transmission and reception to achieve the goal of an increased functional lifetime. We analyze the algorithm's computational and communication complexity and show that it is equivalent or lower in complexity to other dynamic topology control algorithms. Using an empirical model of energy consumption, we show that the EBTC algorithm increases the lifetime of a wireless sensor network by over 40% compared to the best of previously known algorithms

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Wireless Sensor Networks for Networked Manufacturing Systems

    Get PDF

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    An Overview of Manet Power Management Approaches

    Get PDF
    One of the primary issues with MANET is power optimization and utilization because it relies on the node's internal battery power to operate the wireless network. The performance of the MANET is also affected by one of the parameters of energy consumption and utilization. Each operation in the MANET requires some amount of energy to complete. This article elaborated on MANET power management from its inception to the present, as well as doing comparison research to recommend new methods for improving MANET power utilization. This study examines MANET power management options in terms of numerous parameter metrics, including Mobility Aware, Clustering, Topology, Transmission Range, QOS, and link-based. Finally, the methodologies used in MANET power management and performance factor improvement were summarised. To surpass all performance indicators in MANET utilization, new manipulative tactics are necessary. The innovative method is the most effective
    • …
    corecore