2 research outputs found

    Collaborative Execution of Deep Neural Networks on Internet of Things Devices

    Full text link
    With recent advancements in deep neural networks (DNNs), we are able to solve traditionally challenging problems. Since DNNs are compute intensive, consumers, to deploy a service, need to rely on expensive and scarce compute resources in the cloud. This approach, in addition to its dependability on high-quality network infrastructure and data centers, raises new privacy concerns. These challenges may limit DNN-based applications, so many researchers have tried optimize DNNs for local and in-edge execution. However, inadequate power and computing resources of edge devices along with small number of requests limits current optimizations applicability, such as batch processing. In this paper, we propose an approach that utilizes aggregated existing computing power of Internet of Things (IoT) devices surrounding an environment by creating a collaborative network. In this approach, IoT devices cooperate to conduct single-batch inferencing in real time. While exploiting several new model-parallelism methods and their distribution characteristics, our approach enhances the collaborative network by creating a balanced and distributed processing pipeline. We have illustrated our work using many Raspberry Pis with studying DNN models such as AlexNet, VGG16, Xception, and C3D.Comment: Updated version after sysM

    State-of-the-art Techniques in Deep Edge Intelligence

    Full text link
    The potential held by the gargantuan volumes of data being generated across networks worldwide has been truly unlocked by machine learning techniques and more recently Deep Learning. The advantages offered by the latter have seen it rapidly becoming a framework of choice for various applications. However, the centralization of computational resources and the need for data aggregation have long been limiting factors in the democratization of Deep Learning applications. Edge Computing is an emerging paradigm that aims to utilize the hitherto untapped processing resources available at the network periphery. Edge Intelligence (EI) has quickly emerged as a powerful alternative to enable learning using the concepts of Edge Computing. Deep Learning-based Edge Intelligence or Deep Edge Intelligence (DEI) lies in this rapidly evolving domain. In this article, we provide an overview of the major constraints in operationalizing DEI. The major research avenues in DEI have been consolidated under Federated Learning, Distributed Computation, Compression Schemes and Conditional Computation. We also present some of the prevalent challenges and highlight prospective research avenues.Comment: 13 pages, 5 figures, 1 tabl
    corecore