831 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Spectrum Sensing of Cognitive Radio for LEO CubeSat Swarm Inter-Communication

    Get PDF
    Low earth orbit CubeSat swarms provide improvement in the spatial and temporal resolution of remote sensing, rural communication and space exploration due to their innovative and economical satellite design. Unlike conventional large satellites, which demand high transmission power for data exchange, the CubeSat swarm communication system provides interoperability, high data rate between networked nodes, and global coverage with real-time measurement. The main challenges facing CubeSat swarms include inefficient usage of spectrum resources and increased delay of data exchange, and the issues become more severe with increased number of on-orbit CubeSats. Often, Spectrum sensing in cognitive radio is proposed as a critical solution for efficient spectrum utilization and low delay of data exchange. Typically, in spectrum sensing, the secondary user cannot transmit while the primary user is in operation. In this paper, we propose blind source separation (BSS) for multi-user detection with MIMO antennas equipped in all CubeSats, and each antenna receives a mixture of radio signals, including primary and non-primary user signals. Once non-primary signals are removed, the receiver can move on to next step of signal detection. Practical implementation issues of the proposed scheme are studied through computer simulations, with main performance metrics including signal to interference ratio and the BSS algorithm’s convergence speed, which can be essential for the communication resource allocation and power budget calculation of CubeSat platform in configuring LEO non-terrestrial network

    Communication-Efficient Federated Learning for LEO Satellite Networks Integrated with HAPs Using Hybrid NOMA-OFDM

    Full text link
    Space AI has become increasingly important and sometimes even necessary for government, businesses, and society. An active research topic under this mission is integrating federated learning (FL) with satellite communications (SatCom) so that numerous low Earth orbit (LEO) satellites can collaboratively train a machine learning model. However, the special communication environment of SatCom leads to a very slow FL training process up to days and weeks. This paper proposes NomaFedHAP, a novel FL-SatCom approach tailored to LEO satellites, that (1) utilizes high-altitude platforms (HAPs) as distributed parameter servers (PS) to enhance satellite visibility, and (2) introduces non-orthogonal multiple access (NOMA) into LEO to enable fast and bandwidth-efficient model transmissions. In addition, NomaFedHAP includes (3) a new communication topology that exploits HAPs to bridge satellites among different orbits to mitigate the Doppler shift, and (4) a new FL model aggregation scheme that optimally balances models between different orbits and shells. Moreover, we (5) derive a closed-form expression of the outage probability for satellites in near and far shells, as well as for the entire system. Our extensive simulations have validated the mathematical analysis and demonstrated the superior performance of NomaFedHAP in achieving fast and efficient FL model convergence with high accuracy as compared to the state-of-the-art

    Dynamic Routing for Integrated Satellite-Terrestrial Networks: A Constrained Multi-Agent Reinforcement Learning Approach

    Full text link
    The integrated satellite-terrestrial network (ISTN) system has experienced significant growth, offering seamless communication services in remote areas with limited terrestrial infrastructure. However, designing a routing scheme for ISTN is exceedingly difficult, primarily due to the heightened complexity resulting from the inclusion of additional ground stations, along with the requirement to satisfy various constraints related to satellite service quality. To address these challenges, we study packet routing with ground stations and satellites working jointly to transmit packets, while prioritizing fast communication and meeting energy efficiency and packet loss requirements. Specifically, we formulate the problem of packet routing with constraints as a max-min problem using the Lagrange method. Then we propose a novel constrained Multi-Agent reinforcement learning (MARL) dynamic routing algorithm named CMADR, which efficiently balances objective improvement and constraint satisfaction during the updating of policy and Lagrange multipliers. Finally, we conduct extensive experiments and an ablation study using the OneWeb and Telesat mega-constellations. Results demonstrate that CMADR reduces the packet delay by a minimum of 21% and 15%, while meeting stringent energy consumption and packet loss rate constraints, outperforming several baseline algorithms

    Network Characteristics of LEO Satellite Constellations: A Starlink-Based Measurement from End Users

    Full text link
    Low Earth orbit Satellite Networks (LSNs) have been advocated as a key infrastructure for truly global coverage in the forthcoming 6G. This paper presents our initial measurement results and observations on the end-to-end network characteristics of Starlink, arguably the largest LSN constellation to date. Our findings confirm that LSNs are a promising solution towards ubiquitous Internet coverage over the Earth; yet, we also find that the users of Starlink experience much more dynamics in throughput and latency than terrestrial network users, and even frequent outages. Its user experiences are heavily affected by environmental factors such as terrain, solar storms, rain, clouds, and temperature, so is the power consumption. We further analyze Starlink's current bent-pipe relay strategy and its limits, particularly for cross-ocean routes. We have also explored its mobility and portability potentials, and extended our experiments from urban cities to wild remote areas that are facing distinct practical and cultural challenges.Comment: 12 pages, 20 figures, to be published in IEEE INFOCOM 202

    Secure and Efficient Federated Learning in LEO Constellations using Decentralized Key Generation and On-Orbit Model Aggregation

    Full text link
    Satellite technologies have advanced drastically in recent years, leading to a heated interest in launching small satellites into low Earth orbit (LEOs) to collect massive data such as satellite imagery. Downloading these data to a ground station (GS) to perform centralized learning to build an AI model is not practical due to the limited and expensive bandwidth. Federated learning (FL) offers a potential solution but will incur a very large convergence delay due to the highly sporadic and irregular connectivity between LEO satellites and GS. In addition, there are significant security and privacy risks where eavesdroppers or curious servers/satellites may infer raw data from satellites' model parameters transmitted over insecure communication channels. To address these issues, this paper proposes FedSecure, a secure FL approach designed for LEO constellations, which consists of two novel components: (1) decentralized key generation that protects satellite data privacy using a functional encryption scheme, and (2) on-orbit model forwarding and aggregation that generates a partial global model per orbit to minimize the idle waiting time for invisible satellites to enter the visible zone of the GS. Our analysis and results show that FedSecure preserves the privacy of each satellite's data against eavesdroppers, a curious server, or curious satellites. It is lightweight with significantly lower communication and computation overheads than other privacy-preserving FL aggregation approaches. It also reduces convergence delay drastically from days to only a few hours, yet achieving high accuracy of up to 85.35% using realistic satellite images

    Prediction and ephemeris fitting of LEO navigation satellites orbits computed at the antenna phase center

    Get PDF
    Nowadays, Low Earth Orbit (LEO) satellites are proposed to augment the Positioning, Navigation and Timing (PNT) service of the GNSS satellites by directly transmitting navigation signals. In such cases, the users eventually need the orbits at the Antenna Phase Center (APC) of the antenna broadcasting navigation signals toward the Earth instead of those at the satellite Center of Mass (CoM). Using real attitudes of Sentinel satellites and simulated attitudes of different source types with enlarged instabilities, the influences of the attitude instability on the prediction and ephemeris fitting of the APC orbits are studied. It was found that different scenarios of attitude stabilities could lead to prediction degradations with a 3D RMS from a few millimeters to more than 4 cm. The study also showed that the ephemeris fitting errors of the APCs are not significantly impacted, considering both the real attitudes of Sentinel-6A and the simulated attitude instabilities
    • …
    corecore