28,555 research outputs found

    The emergence of information systems: a communication-based theory

    Get PDF
    An information system is more than just the information technology; it is the system that emerges from the complex interactions and relationships between the information technology and the organization. However, what impact information technology has on an organization and how organizational structures and organizational change influence information technology remains an open question. We propose a theory to explain how communication structures emerge and adapt to environmental changes. We operationalize the interplay of information technology and organization as language communities whose members use and develop domain-specific languages for communication. Our theory is anchored in the philosophy of language. In developing it as an emergent perspective, we argue that information systems are self-organizing and that control of this ability is disseminated throughout the system itself, to the members of the language community. Information technology influences the dynamics of this adaptation process as a fundamental constraint leading to perturbations for the information system. We demonstrate how this view is separated from the entanglement in practice perspective and show that this understanding has far-reaching consequences for developing, managing, and examining information systems

    On the convergence of autonomous agent communities

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category

    Effects of a Trust Mechanism on Complex Adaptive Supply Networks: An Agent-Based Social Simulation Study

    Get PDF
    This paper models a supply network as a complex adaptive system (CAS), in which firms or agents interact with one another and adapt themselves. And it applies agent-based social simulation (ABSS), a research method of simulating social systems under the CAS paradigm, to observe emergent outcomes. The main purposes of this paper are to consider a social factor, trust, in modeling the agents\' behavioral decision-makings and, through the simulation studies, to examine the intermediate self-organizing processes and the resulting macro-level system behaviors. The simulations results reveal symmetrical trust levels between two trading agents, based on which the degree of trust relationship in each pair of trading agents as well as the resulting collaboration patterns in the entire supply network emerge. Also, it is shown that agents\' decision-making behavior based on the trust relationship can contribute to the reduction in the variability of inventory levels. This result can be explained by the fact that mutual trust relationship based on the past experiences of trading diminishes an agent\'s uncertainties about the trustworthiness of its trading partners and thereby tends to stabilize its inventory levels.Complex Adaptive System, Agent-Based Social Simulation, Supply Network, Trust

    A Conceptual Model for Network Decision Support Systems

    Get PDF
    We introduce the concept of a network DSS (NWDSS) consisting of fluid, heterogeneous nodes of human and machine agents, connected by wireless technology, which may enter and leave the network at unpredictable times, yet must also cooperate in decision-making activities. We describe distinguishing properties of the NWDSS and propose a 3-tier conceptual model comprised of digital infrastructure, transactive memory systems and emergent collaborative decision-making. We suggest a decision loop of Sense-Analyze-Adapt-Memory leveraging TMS as a starting point for addressing the agile collaborative requirements of emergent decision-making. Several examples of innovative NWDSS services are presented from Naval Postgraduate School field experiments

    COMPLEXITY * SIMPLICITY * SIMPLEXITY

    Get PDF
    “In the midst of order, there is chaos; but in the midst of chaos, there is order”, John Gribbin wrote in his book Deep Simplicity (p.76). In this dialectical spirit, we discuss the generative tension between complexity and simplicity in the theory and practice of management and organization. Complexity theory suggests that the relationship between complex environments and complex organizations advanced by the well-known Ashby’s law, may be reconsidered: only simple organization provides enough space for individual agency to match environmental turbulence in the form of complex organizational responses. We suggest that complex organizing may be paradoxically facilitated by a simple infrastructure, and that the theory of organizations may be viewed as resulting from the interplay between simplicity and complexity. JEL codes:

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)
    • 

    corecore