304,709 research outputs found

    Joint Channel Estimation and Pilot Allocation in Underlay Cognitive MISO Networks

    Get PDF
    Cognitive radios have been proposed as agile technologies to boost the spectrum utilization. This paper tackles the problem of channel estimation and its impact on downlink transmissions in an underlay cognitive radio scenario. We consider primary and cognitive base stations, each equipped with multiple antennas and serving multiple users. Primary networks often suffer from the cognitive interference, which can be mitigated by deploying beamforming at the cognitive systems to spatially direct the transmissions away from the primary receivers. The accuracy of the estimated channel state information (CSI) plays an important role in designing accurate beamformers that can regulate the amount of interference. However, channel estimate is affected by interference. Therefore, we propose different channel estimation and pilot allocation techniques to deal with the channel estimation at the cognitive systems, and to reduce the impact of contamination at the primary and cognitive systems. In an effort to tackle the contamination problem in primary and cognitive systems, we exploit the information embedded in the covariance matrices to successfully separate the channel estimate from other users' channels in correlated cognitive single input multiple input (SIMO) channels. A minimum mean square error (MMSE) framework is proposed by utilizing the second order statistics to separate the overlapping spatial paths that create the interference. We validate our algorithms by simulation and compare them to the state of the art techniques.Comment: 6 pages, 2 figures, invited paper to IWCMC 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Interference Cancellation trough Interference Alignment for Downlink of Cognitive Cellular Networks

    Full text link
    In this letter, we propose the interference cancellation through interference alignment at the downlink of cognitive cellular networks. Interference alignment helps the spatial resources to be shared among primary and secondary cells and thus, it can provide higher degrees of freedom through interference cancellation. We derive and depict the achievable degrees of freedom. We also analyse and calculate the achievable sum rates applying water-filling optimal power allocation
    corecore