3,374 research outputs found

    Cognitive Computation sans Representation

    Get PDF
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is extrinsic to formal procedures as such, and the intended interpretation of syntax makes no difference to the execution of an algorithm. So the unique 'content' postulated by RTM is superfluous to the formal procedures of CTM. And once these procedures are implemented in a physical mechanism, it is exclusively the causal properties of the physical mechanism that are responsible for all aspects of the system's behaviour. So once again, postulated content is rendered superfluous. To the extent that semantic content may appear to play a role in behaviour, it must be syntactically encoded within the system, and just as in a standard computational artefact, so too with the human mind/brain - it's pure syntax all the way down to the level of physical implementation. Hence 'content' is at most a convenient meta-level gloss, projected from the outside by human theorists, which itself can play no role in cognitive processing

    Self-generated neural activity : models and perspective

    Get PDF
    Poster presentation: The brain is autonomously active and this self-sustained neural activity is in general modulated, but not driven, by the sensory input data stream [1,2]. Traditionally one has regarded this eigendynamics as resulting from inter-modular recurrent neural activity [3]. Understanding the basic modules for cognitive computation is, in this view, the primary focus of research and the overall neural dynamics would be determined by the the topology of the intermodular pathways. Here we examine an alternative point of view, asking whether certain aspects of the neural eigendynamics have a central functional role for overall cognitive computation [4,5]. Transiently stable neural activity is regularly observed on the cognitive time-scale of 80–100 ms, with indications that neural competition [6] plays an important role in the selection of the transiently stable neural ensembles [7], also denoted winning coalitions [8]. We report on a theory approach which implements these two principles, transient-state dynamics and neural competition, in terms of an associative neural network with clique encoding [9]. A cognitive system [10] with a non-trivial internal eigendynamics has two seemingly contrasting tasks to fulfill. The internal processes need to be regular and not chaotic on one side, but sensitive to the afferent sensory stimuli on the other side. We show, that these two contrasting demands can be reconciled within our approach based on competitive transient-state dynamics, when allowing the sensory stimuli to modulate the competition for the next winning coalition. By testing the system with the bars problem, we find an emerging cognitive capability. Only based on the two basic architectural principles, neural competition and transient-state dynamics, with no explicit algorithmic encoding, the system performs on its own a non-linear independent component analysis of input data stream. The system has rudimentary biological features. All learning is local Hebbian-style, unsupervised and online. It exhibits an ever-ongoing eigendynamics and at no time is the state or the value of synaptic strengths reset or the system restarted; there is no separation between training and performance. We believe that this kind of approach – cognitive computation with autonomously active neural networks – to be an emerging field, relevant both for system neuroscience and synthetic cognitive systems

    Modeling Life as Cognitive Info-Computation

    Full text link
    This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201

    Cognitive computation of compressed sensing for watermark signal measurement

    Get PDF
    As an important tool for protecting multimedia contents, scrambling and randomizing of original messages is used in generating digital watermark for satisfying security requirements. Based on the neural perception of high-dimensional data, compressed sensing (CS) is proposed as a new technique in watermarking for improved security and reduced computational complexity. In our proposed methodology, watermark signal is extracted from the CS of the Hadamard measurement matrix. Through construction of the scrambled block Hadamard matrix utilizing a cryptographic key, encrypting the watermark signal in CS domain is achieved without any additional computation required. The extensive experiments have shown that the neural inspired CS mechanism can generate watermark signal of higher security, yet it still maintains a better trade-off between transparency and robustness
    • …
    corecore