2,171 research outputs found

    Clinical Features of Rapidly Progressive Alzheimer's Disease

    Get PDF
    Objective: To characterize clinical features, CSF biomarkers and genetic polymorphisms of patients suffering from a rapidly progressing subtype of Alzheimer's dementia (rpAD). Methods: Retrospective analyses of 32 neuropathologically confirmed cases differentially diagnosed as AD out of a group with rapidly progressive dementia. CSF biomarkers (14-3-3, tau, beta-amyloid 1-42) and genetic markers (PRNP codon 129, apolipoprotein E, ApoE, polymorphism) were determined. Results: Median survival was 26 months, age at onset 73 years. Biomarkers: mean beta-amyloid 1-42: 266 pg/ml, median tau: 491 pg/ml, 14-3-3 positive: 31%. Genetic polymorphisms showed a predominance of methionine homozygosity at PRNP codon 129 and a low frequency of ApoE4 (38%, no homozygous patients). Thirty-five symptoms were studied. Frequent symptoms were myoclonus (75%), disturbed gait (66%) and rigidity (50%). Discussion: rpAD is associated with a diversity of neurological signs even able to mimic Creutz feldt-Jakob disease. Biomarkers and genetic profile differ from those seen in classical AD. The findings on biomarkers, symptomatology and genetics may aid the differential diagnostic process. Copyright (C) 2010 S. Karger AG, Base

    Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus

    Get PDF
    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first documented in the Kingdom of Saudi Arabia (KSA) in 2012 and, to date, has been identified in 180 cases with 43% mortality. In this study, we have determined the MERS-CoV evolutionary rate, documented genetic variants of the virus and their distribution throughout the Arabian peninsula, and identified the genome positions under positive selection, important features for monitoring adaptation of MERS-CoV to human transmission and for identifying the source of infections. Respiratory samples from confirmed KSA MERS cases from May to September 2013 were subjected to whole-genome deep sequencing, and 32 complete or partial sequences (20 were ≥99% complete, 7 were 50 to 94% complete, and 5 were 27 to 50% complete) were obtained, bringing the total available MERS-CoV genomic sequences to 65. An evolutionary rate of 1.12 × 10−3 substitutions per site per year (95% credible interval [95% CI], 8.76 × 10−4; 1.37 × 10−3) was estimated, bringing the time to most recent common ancestor to March 2012 (95% CI, December 2011; June 2012). Only one MERS-CoV codon, spike 1020, located in a domain required for cell entry, is under strong positive selection. Four KSA MERS-CoV phylogenetic clades were found, with 3 clades apparently no longer contributing to current cases. The size of the population infected with MERS-CoV showed a gradual increase to June 2013, followed by a decline, possibly due to increased surveillance and infection control measures combined with a basic reproduction number (R0) for the virus that is less than 1

    p-Adic Modelling of the Genome and the Genetic Code

    Full text link
    The present paper is devoted to foundations of p-adic modelling in genomics. Considering nucleotides, codons, DNA and RNA sequences, amino acids, and proteins as information systems, we have formulated the corresponding p-adic formalisms for their investigations. Each of these systems has its characteristic prime number used for construction of the related information space. Relevance of this approach is illustrated by some examples. In particular, it is shown that degeneration of the genetic code is a p-adic phenomenon. We have also put forward a hypothesis on evolution of the genetic code assuming that primitive code was based on single nucleotides and chronologically first four amino acids. This formalism of p-adic genomic information systems can be implemented in computer programs and applied to various concrete cases.Comment: 26 pages. Submitted to the Computer Journal for a special issu

    Hemagglutinin sequence conservation guided stem immunogen design from influenza A H3 subtype

    Get PDF
    Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential ‘universal’ vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, ‘isoleucine-zipper’ or ‘foldon’. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up

    Distribution and genetic variability of Staphylinidae across a gradient of anthropogenically influenced insular landscapes

    Get PDF
    This paper describes the distribution and genetic variability of rove beetles (Coleoptera Staphylinidae) in anthropogenically influenced insular landscapes. The study was conducted in the Azores archipelago, characterized by high anthropogenic influence and landscape fragmentation. Collections were made in five islands, from eight habitats, along a gradient of anthropogenic influence. The species of Staphylinidae from the Azores collected for this study were widely distributed and showed low habitat fidelity. Rove beetle richness was associated with anthropogenic influence and habitat type, increasing from less to more anthropogenic impacted habitats. However, genetic diversity of profiled species (i.e. with three or more specimens per species/habitat) does not seem affected by anthropogenic influence in the different habitat types, isolation or landscape fragmentation. COI haplotypes were, as a rule, not exclusive to a given island or habitat. High level of genetic divergence and nucleotide saturation was found in closely related morphological designated species, demonstrating possible disparities between currently defined taxonomic units based on morphology and molecular phylogenies of Staphylinidae. This study found evidence of cryptic speciation in the Atheta fungi (Gravenhorst) species complex which had thus far remained undetected. Similar trends were found for Oligota parva Kraatz, Oxytelus sculptus Gravenhorst, Oligota pumilio Kiesenwetter. Previous studies with lower taxonomical resolution may have underestimated the biotic diversity reported in the Azores in comparison to other Macaronesian archipelagos.info:eu-repo/semantics/publishedVersio

    Evaluating strategies of phylogenetic analyses by the coherence of their results

    Full text link
    I propose an approach to identify, among several strategies of phylogenetic analysis, those producing the most accurate results. This approach is based on the hypothesis that the more a result is reproduced from independent data, the more it reflects the historical signal common to the analysed data. Under this hypothesis, the capacity of an analytical strategy to extract historical signal should correlate positively with the coherence of the obtained results. I apply this approach to a series of analyses on empirical data, basing the coherence measure on the Robinson-Foulds distances between the obtained trees. At first approximation, the analytical strategies most suitable for the data produce the most coherent results. However, risks of false positives and false negatives are identified, which are difficult to rule out.Comment: 6 pages, 3 figures, accepted for publication in Comptes Rendus Palevol, based on a work presented at the "Journ\'ees d'automne 2012 de la Soci\'et\'e Fran\c{c}aise de Syst\'ematique" (http://www.normalesup.org/~bli/Papers/SFS_2012_BL.pdf

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    Acquisition of an Agrobacterium Ri Plasmid and Pathogenicity by Other -Proteobacteria in Cucumber and Tomato Crops Affected by Root Mat

    Get PDF
    Root mat of cucumbers and tomatoes has previously been shown to be caused by Agrobacterium radiobacter strains harboring a root-inducing Ri plasmid (pRi). Nine other pRi-harboring -Proteobacteria have subsequently been isolated from root mat-infected crops. Fatty acid profiling and partial 16S rRNA sequence analysis identified three of these strains as being in the genus Ochrobactrum, five as being in the genus Rhizobium, and one as being in the genus Sinorhizobium. An in vitro pathogenicity test involving inoculation of cucumber cotyledons was developed. All pRi-harboring -Proteobacteria induced typical root mat symptoms from the cotyledons. Average transformation rates for rhizogenic Ochrobactrum (46%) and Rhizobium (44%) strains were lower than those observed for rhizogenic A. radiobacter strains (64%). However, individual strains from these three genera all had transformation rates comparable to those observed from cotyledons inoculatedwith a rhizogenic Sinorhizobium strain (75%)

    Identification of an osteocalcin isoform in fish with a large acidic prodomain

    Get PDF
    Osteocalcin is a small, secreted bone protein whose gene consists of four exons. In the course of analyzing the structure of fish osteocalcin genes, we recently found that the spotted green pufferfish has two possible exon 2 structures, one of 15 bp and the other of 324 bp. Subsequent analysis of the pufferfish cDNA showed that only the transcript with a large exon 2 exists. Exon 2 codes for the osteocalcin propeptide, and exon 2 of pufferfish osteocalcin is ∼3.4-fold larger than exon 2 previously found in other vertebrate species. We have termed this new pufferfish osteocalcin isoform OC2. Additional studies showed that the OC2 isoform is restricted to a unique fish taxonomic group, the Osteichthyes; OC2 is the only osteocalcin isoform found so far in six Osteichthyes species, whereas both OC1 and OC2 isoforms coexist in zebrafish and rainbow trout. The larger size of the OC2 propeptide is due to an acidic region that is likely to be highly phosphorylated and has no counterpart in the OC1 propeptide. We propose 1) that OC1 and OC2 are encoded by distinct genes that originated from a duplication event that probably occurred in the teleost fish lineage soon after divergence from tetrapods and 2) that the novel OC2 propeptide could be, if secreted, a phosphoprotein that participates in the regulation of biomineralization through its large acidic and phosphorylated propeptide
    corecore