119,166 research outputs found

    Nomographic Functions: Efficient Computation in Clustered Gaussian Sensor Networks

    Full text link
    In this paper, a clustered wireless sensor network is considered that is modeled as a set of coupled Gaussian multiple-access channels. The objective of the network is not to reconstruct individual sensor readings at designated fusion centers but rather to reliably compute some functions thereof. Our particular attention is on real-valued functions that can be represented as a post-processed sum of pre-processed sensor readings. Such functions are called nomographic functions and their special structure permits the utilization of the interference property of the Gaussian multiple-access channel to reliably compute many linear and nonlinear functions at significantly higher rates than those achievable with standard schemes that combat interference. Motivated by this observation, a computation scheme is proposed that combines a suitable data pre- and post-processing strategy with a nested lattice code designed to protect the sum of pre-processed sensor readings against the channel noise. After analyzing its computation rate performance, it is shown that at the cost of a reduced rate, the scheme can be extended to compute every continuous function of the sensor readings in a finite succession of steps, where in each step a different nomographic function is computed. This demonstrates the fundamental role of nomographic representations.Comment: to appear in IEEE Transactions on Wireless Communication

    Detecting and Estimating Signals over Noisy and Unreliable Synapses: Information-Theoretic Analysis

    Get PDF
    The temporal precision with which neurons respond to synaptic inputs has a direct bearing on the nature of the neural code. A characterization of the neuronal noise sources associated with different sub-cellular components (synapse, dendrite, soma, axon, and so on) is needed to understand the relationship between noise and information transfer. Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on information transfer in the absence of interaction among presynaptic inputs. We derive theoretical lower bounds on the capacity of a simple model of a cortical synapse under two different paradigms. In signal estimation, the signal is assumed to be encoded in the mean firing rate of the presynaptic neuron, and the objective is to estimate the continuous input signal from the postsynaptic voltage. In signal detection, the input is binary, and the presence or absence of a presynaptic action potential is to be detected from the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is characterized by deriving optimal strategies under these two paradigms. On the basis of parameter values derived from neocortex, we find that single cortical synapses cannot transmit information reliably, but redundancy obtained using a small number of multiple synapses leads to a significant improvement in the information capacity of synaptic transmission

    Reliable Physical Layer Network Coding

    Full text link
    When two or more users in a wireless network transmit simultaneously, their electromagnetic signals are linearly superimposed on the channel. As a result, a receiver that is interested in one of these signals sees the others as unwanted interference. This property of the wireless medium is typically viewed as a hindrance to reliable communication over a network. However, using a recently developed coding strategy, interference can in fact be harnessed for network coding. In a wired network, (linear) network coding refers to each intermediate node taking its received packets, computing a linear combination over a finite field, and forwarding the outcome towards the destinations. Then, given an appropriate set of linear combinations, a destination can solve for its desired packets. For certain topologies, this strategy can attain significantly higher throughputs over routing-based strategies. Reliable physical layer network coding takes this idea one step further: using judiciously chosen linear error-correcting codes, intermediate nodes in a wireless network can directly recover linear combinations of the packets from the observed noisy superpositions of transmitted signals. Starting with some simple examples, this survey explores the core ideas behind this new technique and the possibilities it offers for communication over interference-limited wireless networks.Comment: 19 pages, 14 figures, survey paper to appear in Proceedings of the IEE

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces
    corecore