15,412 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Downlink Noncoherent Cooperation without Transmitter Phase Alignment

    Full text link
    Multicell joint processing can mitigate inter-cell interference and thereby increase the spectral efficiency of cellular systems. Most previous work has assumed phase-aligned (coherent) transmissions from different base transceiver stations (BTSs), which is difficult to achieve in practice. In this work, a noncoherent cooperative transmission scheme for the downlink is studied, which does not require phase alignment. The focus is on jointly serving two users in adjacent cells sharing the same resource block. The two BTSs partially share their messages through a backhaul link, and each BTS transmits a superposition of two codewords, one for each receiver. Each receiver decodes its own message, and treats the signals for the other receiver as background noise. With narrowband transmissions the achievable rate region and maximum achievable weighted sum rate are characterized by optimizing the power allocation (and the beamforming vectors in the case of multiple transmit antennas) at each BTS between its two codewords. For a wideband (multicarrier) system, a dual formulation of the optimal power allocation problem across sub-carriers is presented, which can be efficiently solved by numerical methods. Results show that the proposed cooperation scheme can improve the sum rate substantially in the low to moderate signal-to-noise ratio (SNR) range.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    Implementation of generalized quantum measurements: superadditive quantum coding, accessible information extraction, and classical capacity limit

    Full text link
    Quantum information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, the first experimental demonstration was reported [Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum coding gain, even in a small code length, can boost the communication performance of conventional coding technique.Comment: 15 pages, 14 figure
    • …
    corecore