359 research outputs found

    The Three Node Wireless Network: Achievable Rates and Cooperation Strategies

    Full text link
    We consider a wireless network composed of three nodes and limited by the half-duplex and total power constraints. This formulation encompasses many of the special cases studied in the literature and allows for capturing the common features shared by them. Here, we focus on three special cases, namely 1) Relay Channel, 2) Multicast Channel, and 3) Conference Channel. These special cases are judicially chosen to reflect varying degrees of complexity while highlighting the common ground shared by the different variants of the three node wireless network. For the relay channel, we propose a new cooperation scheme that exploits the wireless feedback gain. This scheme combines the benefits of decode-and-forward and compress-and-forward strategies and avoids the idealistic feedback assumption adopted in earlier works. Our analysis of the achievable rate of this scheme reveals the diminishing feedback gain at both the low and high signal-to-noise ratio regimes. Inspired by the proposed feedback strategy, we identify a greedy cooperation framework applicable to both the multicast and conference channels. Our performance analysis reveals several nice properties of the proposed greedy approach and the central role of cooperative source-channel coding in exploiting the receiver side information in the wireless network setting. Our proofs for the cooperative multicast with side-information rely on novel nested and independent binning encoders along with a list decoder.Comment: 52 page

    Relaying Simultaneous Multicast Messages

    Full text link
    The problem of multicasting multiple messages with the help of a relay, which may also have an independent message of its own to multicast, is considered. As a first step to address this general model, referred to as the compound multiple access channel with a relay (cMACr), the capacity region of the multiple access channel with a "cognitive" relay is characterized, including the cases of partial and rate-limited cognition. Achievable rate regions for the cMACr model are then presented based on decode-and-forward (DF) and compress-and-forward (CF) relaying strategies. Moreover, an outer bound is derived for the special case in which each transmitter has a direct link to one of the receivers while the connection to the other receiver is enabled only through the relay terminal. Numerical results for the Gaussian channel are also provided.Comment: This paper was presented at the IEEE Information Theory Workshop, Volos, Greece, June 200

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    A Unified Approach for Network Information Theory

    Full text link
    In this paper, we take a unified approach for network information theory and prove a coding theorem, which can recover most of the achievability results in network information theory that are based on random coding. The final single-letter expression has a very simple form, which was made possible by many novel elements such as a unified framework that represents various network problems in a simple and unified way, a unified coding strategy that consists of a few basic ingredients but can emulate many known coding techniques if needed, and new proof techniques beyond the use of standard covering and packing lemmas. For example, in our framework, sources, channels, states and side information are treated in a unified way and various constraints such as cost and distortion constraints are unified as a single joint-typicality constraint. Our theorem can be useful in proving many new achievability results easily and in some cases gives simpler rate expressions than those obtained using conventional approaches. Furthermore, our unified coding can strictly outperform existing schemes. For example, we obtain a generalized decode-compress-amplify-and-forward bound as a simple corollary of our main theorem and show it strictly outperforms previously known coding schemes. Using our unified framework, we formally define and characterize three types of network duality based on channel input-output reversal and network flow reversal combined with packing-covering duality.Comment: 52 pages, 7 figures, submitted to IEEE Transactions on Information theory, a shorter version will appear in Proc. IEEE ISIT 201
    • …
    corecore