2,066,088 research outputs found

    Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Problem

    Full text link
    We introduce a distributed source coding scheme called successive Wyner-Ziv coding. We show that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via the successive Wyner-Ziv coding. The concept of successive refinement in the single source coding is generalized to the distributed source coding scenario, which we refer to as distributed successive refinement. For the quadratic Gaussian CEO problem, we establish a necessary and sufficient condition for distributed successive refinement, where the successive Wyner-Ziv coding scheme plays an important role.Comment: 28 pages, submitted to the IEEE Transactions on Information Theor

    Coding Opportunity Densification Strategies for Instantly Decodable Network Coding

    Full text link
    In this paper, we aim to identify the strategies that can maximize and monotonically increase the density of the coding opportunities in instantly decodable network coding (IDNC).Using the well-known graph representation of IDNC, first derive an expression for the exact evolution of the edge set size after the transmission of any arbitrary coded packet. From the derived expressions, we show that sending commonly wanted packets for all the receivers can maximize the number of coding opportunities. Since guaranteeing such property in IDNC is usually impossible, this strategy does not guarantee the achievement of our target. Consequently, we further investigate the problem by deriving the expectation of the edge set size evolution after ignoring the identities of the packets requested by the different receivers and considering only their numbers. We then employ this expected expression to show that serving the maximum number of receivers having the largest numbers of missing packets and erasure probabilities tends to both maximize and monotonically increase the expected density of coding opportunities. Simulation results justify our theoretical findings. Finally, we validate the importance of our work through two case studies showing that our identified strategy outperforms the step-by-step service maximization solution in optimizing both the IDNC completion delay and receiver goodput

    Practical Network Coding in Sensor Networks: Quo Vadis?

    Get PDF
    Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ

    ROI coding of volumetric medical images with application to visualisation

    Get PDF
    This paper presents region of interest (ROI) coding of volumetric medical images with the region itself being three dimensional. An extension to 3D-SPIHT which allows 3D ROI coding is proposed. ROI coding enables faster reconstruction of diagnostically useful regions in volumetric datasets by assigning higher priority to them in the bitstream. It also introduces the possibility for increased compression performance, by allowing certain parts of the volume to be coded in a lossy manner while others are coded losslessly. Results presented highlight the benefits of the ROI extension. Additionally, a visualisation specific ROI coding case is examined. Results show the advantages of ROI coding in terms of the quality of the visualised decoded volumeThis paper presents region of interest (ROI) coding of volumetric medical images with the region itself being three dimensional. An extension to 3D-SPIHT which allows 3D ROI coding is proposed. ROI coding enables faster reconstruction of diagnostically useful regions in volumetric datasets by assigning higher priority to them in the bitstream. It also introduces the possibility for increased compression performance, by allowing certain parts of the volume to be coded in a lossy manner while others are coded losslessly. Results presented highlight the benefits of the ROI extension. Additionally, a visualisation specific ROI coding case is examined. Results show the advantages of ROI coding in terms of the quality of the visualised decoded volume

    Second-Order Coding Rates for Conditional Rate-Distortion

    Full text link
    This paper characterizes the second-order coding rates for lossy source coding with side information available at both the encoder and the decoder. We first provide non-asymptotic bounds for this problem and then specialize the non-asymptotic bounds for three different scenarios: discrete memoryless sources, Gaussian sources, and Markov sources. We obtain the second-order coding rates for these settings. It is interesting to observe that the second-order coding rate for Gaussian source coding with Gaussian side information available at both the encoder and the decoder is the same as that for Gaussian source coding without side information. Furthermore, regardless of the variance of the side information, the dispersion is 1/21/2 nats squared per source symbol.Comment: 20 pages, 2 figures, second-order coding rates, finite blocklength, network information theor

    Deconstructing Dense Coding

    Full text link
    The remarkable transmission of two bits of information via a single qubit entangled with another at the destination, is presented as an expansion of the unremarkable classical circuit that transmits the bits with two direct qubit-qubit couplings between source and destinationComment: 3 pages, 2 figure

    Content-type coding

    Full text link
    This paper is motivated by the observation that, in many cases, we do not need to serve specific messages, but rather, any message within a content-type. Content-type traffic pervades a host of applications today, ranging from search engines and recommender networks to newsfeeds and advertisement networks. The paper asks a novel question: if there are benefits in designing network and channel codes specifically tailored to content-type requests. It provides three examples of content-type formulations to argue that, indeed in some cases we can have significant such benefits.Comment: Netco
    corecore