3 research outputs found

    Codes over Matrix Rings for Space-Time Coded Modulations

    Full text link
    It is known that, for transmission over quasi-static MIMO fading channels with n transmit antennas, diversity can be obtained by using an inner fully diverse space-time block code while coding gain, derived from the determinant criterion, comes from an appropriate outer code. When the inner code has a cyclic algebra structure over a number field, as for perfect space-time codes, an outer code can be designed via coset coding. More precisely, we take the quotient of the algebra by a two-sided ideal which leads to a finite alphabet for the outer code, with a cyclic algebra structure over a finite field or a finite ring. We show that the determinant criterion induces various metrics on the outer code, such as the Hamming and Bachoc distances. When n=2, partitioning the 2x2 Golden code by using an ideal above the prime 2 leads to consider codes over either M2(F_2) or M2(F_2[i]), both being non-commutative alphabets. Matrix rings of higher dimension, suitable for 3x3 and 4x4 perfect codes, give rise to more complex examples

    NonCommutative Rings and their Applications, IV ABSTRACTS Checkable Codes from Group Algebras to Group Rings

    Get PDF
    Abstract A code over a group ring is defined to be a submodule of that group ring. For a code C over a group ring RG, C is said to be checkable if there is v ∈ RG such that C = {x ∈ RG : xv = 0}. In [1], Jitman et al. introduced the notion of code-checkable group ring. We say that a group ring RG is code-checkable if every ideal in RG is a checkable code. In their paper, Jitman et al. gave a necessary and sufficient condition for the group ring FG, when F is a finite field and G is a finite abelian group, to be codecheckable. In this paper, we generalize this result for RG, when R is a finite commutative semisimple ring and G is any finite group. Our main result states that: Given a finite commutative semisimple ring R and a finite group G, the group ring RG is code-checkable if and only if G is Ο€ -by-cyclic Ο€; where Ο€ is the set of noninvertible primes in R
    corecore