52,089 research outputs found

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    Correcting Charge-Constrained Errors in the Rank-Modulation Scheme

    Get PDF
    We investigate error-correcting codes for a the rank-modulation scheme with an application to flash memory devices. In this scheme, a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The resulting scheme eliminates the need for discrete cell levels, overcomes overshoot errors when programming cells (a serious problem that reduces the writing speed), and mitigates the problem of asymmetric errors. In this paper, we study the properties of error-correcting codes for charge-constrained errors in the rank-modulation scheme. In this error model the number of errors corresponds to the minimal number of adjacent transpositions required to change a given stored permutation to another erroneous one—a distance measure known as Kendall’s τ-distance.We show bounds on the size of such codes, and use metric-embedding techniques to give constructions which translate a wealth of knowledge of codes in the Lee metric to codes over permutations in Kendall’s τ-metric. Specifically, the one-error-correcting codes we construct are at least half the ball-packing upper bound

    Fault Secure Encoder and Decoder for NanoMemory Applications

    Get PDF
    Memory cells have been protected from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure encoder and decoder circuitry for memory designs. The key novel contribution of this paper is identifying and defining a new class of error-correcting codes whose redundancy makes the design of fault-secure detectors (FSD) particularly simple. We further quantify the importance of protecting encoder and decoder circuitry against transient errors, illustrating a scenario where the system failure rate (FIT) is dominated by the failure rate of the encoder and decoder. We prove that Euclidean geometry low-density parity-check (EG-LDPC) codes have the fault-secure detector capability. Using some of the smaller EG-LDPC codes, we can tolerate bit or nanowire defect rates of 10% and fault rates of 10^(-18) upsets/device/cycle, achieving a FIT rate at or below one for the entire memory system and a memory density of 10^(11) bit/cm^2 with nanowire pitch of 10 nm for memory blocks of 10 Mb or larger. Larger EG-LDPC codes can achieve even higher reliability and lower area overhead

    Non-asymptotic Upper Bounds for Deletion Correcting Codes

    Full text link
    Explicit non-asymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for qq-ary alphabet and string length nn is shown to be of size at most qnq(q1)(n1)\frac{q^n-q}{(q-1)(n-1)}. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The non-asymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known non-asymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov-Tenengolts codes are the largest single-deletion correcting codes.Comment: 18 pages, 4 figure

    Coding for Racetrack Memories

    Full text link
    Racetrack memory is a new technology which utilizes magnetic domains along a nanoscopic wire in order to obtain extremely high storage density. In racetrack memory, each magnetic domain can store a single bit of information, which can be sensed by a reading port (head). The memory has a tape-like structure which supports a shift operation that moves the domains to be read sequentially by the head. In order to increase the memory's speed, prior work studied how to minimize the latency of the shift operation, while the no less important reliability of this operation has received only a little attention. In this work we design codes which combat shift errors in racetrack memory, called position errors. Namely, shifting the domains is not an error-free operation and the domains may be over-shifted or are not shifted, which can be modeled as deletions and sticky insertions. While it is possible to use conventional deletion and insertion-correcting codes, we tackle this problem with the special structure of racetrack memory, where the domains can be read by multiple heads. Each head outputs a noisy version of the stored data and the multiple outputs are combined in order to reconstruct the data. Under this paradigm, we will show that it is possible to correct, with at most a single bit of redundancy, dd deletions with d+1d+1 heads if the heads are well-separated. Similar results are provided for burst of deletions, sticky insertions and combinations of both deletions and sticky insertions

    Systematic Error-Correcting Codes for Rank Modulation

    Get PDF
    The rank-modulation scheme has been recently proposed for efficiently storing data in nonvolatile memories. Error-correcting codes are essential for rank modulation, however, existing results have been limited. In this work we explore a new approach, \emph{systematic error-correcting codes for rank modulation}. Systematic codes have the benefits of enabling efficient information retrieval and potentially supporting more efficient encoding and decoding procedures. We study systematic codes for rank modulation under Kendall's τ\tau-metric as well as under the \ell_\infty-metric. In Kendall's τ\tau-metric we present [k+2,k,3][k+2,k,3]-systematic codes for correcting one error, which have optimal rates, unless systematic perfect codes exist. We also study the design of multi-error-correcting codes, and provide two explicit constructions, one resulting in [n+1,k+1,2t+2][n+1,k+1,2t+2] systematic codes with redundancy at most 2t+12t+1. We use non-constructive arguments to show the existence of [n,k,nk][n,k,n-k]-systematic codes for general parameters. Furthermore, we prove that for rank modulation, systematic codes achieve the same capacity as general error-correcting codes. Finally, in the \ell_\infty-metric we construct two [n,k,d][n,k,d] systematic multi-error-correcting codes, the first for the case of d=O(1)d=O(1), and the second for d=Θ(n)d=\Theta(n). In the latter case, the codes have the same asymptotic rate as the best codes currently known in this metric
    corecore