458 research outputs found

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    Increasing Flash Memory Lifetime by Dynamic Voltage Allocation for Constant Mutual Information

    Full text link
    The read channel in Flash memory systems degrades over time because the Fowler-Nordheim tunneling used to apply charge to the floating gate eventually compromises the integrity of the cell because of tunnel oxide degradation. While degradation is commonly measured in the number of program/erase cycles experienced by a cell, the degradation is proportional to the number of electrons forced into the floating gate and later released by the erasing process. By managing the amount of charge written to the floating gate to maintain a constant read-channel mutual information, Flash lifetime can be extended. This paper proposes an overall system approach based on information theory to extend the lifetime of a flash memory device. Using the instantaneous storage capacity of a noisy flash memory channel, our approach allocates the read voltage of flash cell dynamically as it wears out gradually over time. A practical estimation of the instantaneous capacity is also proposed based on soft information via multiple reads of the memory cells.Comment: 5 pages. 5 figure

    New Constructions of Codes for Asymmetric Channels via Concatenation

    Get PDF
    We present new constructions of codes for asymmetric channels for both binary and nonbinary alphabets, based on methods of generalized code concatenation. For the binary asymmetric channel, our methods construct nonlinear single-error-correcting codes from ternary outer codes. We show that some of the Varshamov-Tenengol'ts-Constantin-Rao codes, a class of binary nonlinear codes for this channel, have a nice structure when viewed as ternary codes. In many cases, our ternary construction yields even better codes. For the nonbinary asymmetric channel, our methods construct linear codes for many lengths and distances which are superior to the linear codes of the same length capable of correcting the same number of symmetric errors

    Correcting Charge-Constrained Errors in the Rank-Modulation Scheme

    Get PDF
    We investigate error-correcting codes for a the rank-modulation scheme with an application to flash memory devices. In this scheme, a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The resulting scheme eliminates the need for discrete cell levels, overcomes overshoot errors when programming cells (a serious problem that reduces the writing speed), and mitigates the problem of asymmetric errors. In this paper, we study the properties of error-correcting codes for charge-constrained errors in the rank-modulation scheme. In this error model the number of errors corresponds to the minimal number of adjacent transpositions required to change a given stored permutation to another erroneous one—a distance measure known as Kendall’s τ-distance.We show bounds on the size of such codes, and use metric-embedding techniques to give constructions which translate a wealth of knowledge of codes in the Lee metric to codes over permutations in Kendall’s τ-metric. Specifically, the one-error-correcting codes we construct are at least half the ball-packing upper bound

    Constructions of Rank Modulation Codes

    Full text link
    Rank modulation is a way of encoding information to correct errors in flash memory devices as well as impulse noise in transmission lines. Modeling rank modulation involves construction of packings of the space of permutations equipped with the Kendall tau distance. We present several general constructions of codes in permutations that cover a broad range of code parameters. In particular, we show a number of ways in which conventional error-correcting codes can be modified to correct errors in the Kendall space. Codes that we construct afford simple encoding and decoding algorithms of essentially the same complexity as required to correct errors in the Hamming metric. For instance, from binary BCH codes we obtain codes correcting tt Kendall errors in nn memory cells that support the order of n!/(log⁥2n!)tn!/(\log_2n!)^t messages, for any constant t=1,2,...t= 1,2,... We also construct families of codes that correct a number of errors that grows with nn at varying rates, from Θ(n)\Theta(n) to Θ(n2)\Theta(n^{2}). One of our constructions gives rise to a family of rank modulation codes for which the trade-off between the number of messages and the number of correctable Kendall errors approaches the optimal scaling rate. Finally, we list a number of possibilities for constructing codes of finite length, and give examples of rank modulation codes with specific parameters.Comment: Submitted to IEEE Transactions on Information Theor
    • 

    corecore