822 research outputs found

    Trajectory Codes for Flash Memory

    Get PDF
    Flash memory is well-known for its inherent asymmetry: the flash-cell charge levels are easy to increase but are hard to decrease. In a general rewriting model, the stored data changes its value with certain patterns. The patterns of data updates are determined by the data structure and the application, and are independent of the constraints imposed by the storage medium. Thus, an appropriate coding scheme is needed so that the data changes can be updated and stored efficiently under the storage-medium's constraints. In this paper, we define the general rewriting problem using a graph model. It extends many known rewriting models such as floating codes, WOM codes, buffer codes, etc. We present a new rewriting scheme for flash memories, called the trajectory code, for rewriting the stored data as many times as possible without block erasures. We prove that the trajectory code is asymptotically optimal in a wide range of scenarios. We also present randomized rewriting codes optimized for expected performance (given arbitrary rewriting sequences). Our rewriting codes are shown to be asymptotically optimal.Comment: Submitted to IEEE Trans. on Inform. Theor

    Coding for Errors and Erasures in Random Network Coding

    Get PDF
    The problem of error-control in random linear network coding is considered. A ``noncoherent'' or ``channel oblivious'' model is assumed where neither transmitter nor receiver is assumed to have knowledge of the channel transfer characteristic. Motivated by the property that linear network coding is vector-space preserving, information transmission is modelled as the injection into the network of a basis for a vector space VV and the collection by the receiver of a basis for a vector space UU. A metric on the projective geometry associated with the packet space is introduced, and it is shown that a minimum distance decoder for this metric achieves correct decoding if the dimension of the space VUV \cap U is sufficiently large. If the dimension of each codeword is restricted to a fixed integer, the code forms a subset of a finite-field Grassmannian, or, equivalently, a subset of the vertices of the corresponding Grassmann graph. Sphere-packing and sphere-covering bounds as well as a generalization of the Singleton bound are provided for such codes. Finally, a Reed-Solomon-like code construction, related to Gabidulin's construction of maximum rank-distance codes, is described and a Sudan-style ``list-1'' minimum distance decoding algorithm is provided.Comment: This revised paper contains some minor changes and clarification

    Zigzag Codes: MDS Array Codes with Optimal Rebuilding

    Get PDF
    MDS array codes are widely used in storage systems to protect data against erasures. We address the \emph{rebuilding ratio} problem, namely, in the case of erasures, what is the fraction of the remaining information that needs to be accessed in order to rebuild \emph{exactly} the lost information? It is clear that when the number of erasures equals the maximum number of erasures that an MDS code can correct then the rebuilding ratio is 1 (access all the remaining information). However, the interesting and more practical case is when the number of erasures is smaller than the erasure correcting capability of the code. For example, consider an MDS code that can correct two erasures: What is the smallest amount of information that one needs to access in order to correct a single erasure? Previous work showed that the rebuilding ratio is bounded between 1/2 and 3/4, however, the exact value was left as an open problem. In this paper, we solve this open problem and prove that for the case of a single erasure with a 2-erasure correcting code, the rebuilding ratio is 1/2. In general, we construct a new family of rr-erasure correcting MDS array codes that has optimal rebuilding ratio of er\frac{e}{r} in the case of ee erasures, 1er1 \le e \le r. Our array codes have efficient encoding and decoding algorithms (for the case r=2r=2 they use a finite field of size 3) and an optimal update property.Comment: 23 pages, 5 figures, submitted to IEEE transactions on information theor

    MDS Array Codes with Optimal Rebuilding

    Get PDF
    MDS array codes are widely used in storage systems to protect data against erasures. We address the rebuilding ratio problem, namely, in the case of erasures, what is the the fraction of the remaining information that needs to be accessed in order to rebuild exactly the lost information? It is clear that when the number of erasures equals the maximum number of erasures that an MDS code can correct then the rebuilding ratio is 1 (access all the remaining information). However, the interesting (and more practical) case is when the number of erasures is smaller than the erasure correcting capability of the code. For example, consider an MDS code that can correct two erasures: What is the smallest amount of information that one needs to access in order to correct a single erasure? Previous work showed that the rebuilding ratio is bounded between 1/2 and 3/4 , however, the exact value was left as an open problem. In this paper, we solve this open problem and prove that for the case of a single erasure with a 2-erasure correcting code, the rebuilding ratio is 1/2 . In general, we construct a new family of r-erasure correcting MDS array codes that has optimal rebuilding ratio of 1/r in the case of a single erasure. Our array codes have efficient encoding and decoding algorithms (for the case r = 2 they use a finite field of size 3) and an optimal update property
    corecore