5,565 research outputs found

    One-Shot Fine-Grained Instance Retrieval

    Full text link
    Fine-Grained Visual Categorization (FGVC) has achieved significant progress recently. However, the number of fine-grained species could be huge and dynamically increasing in real scenarios, making it difficult to recognize unseen objects under the current FGVC framework. This raises an open issue to perform large-scale fine-grained identification without a complete training set. Aiming to conquer this issue, we propose a retrieval task named One-Shot Fine-Grained Instance Retrieval (OSFGIR). "One-Shot" denotes the ability of identifying unseen objects through a fine-grained retrieval task assisted with an incomplete auxiliary training set. This paper first presents the detailed description to OSFGIR task and our collected OSFGIR-378K dataset. Next, we propose the Convolutional and Normalization Networks (CN-Nets) learned on the auxiliary dataset to generate a concise and discriminative representation. Finally, we present a coarse-to-fine retrieval framework consisting of three components, i.e., coarse retrieval, fine-grained retrieval, and query expansion, respectively. The framework progressively retrieves images with similar semantics, and performs fine-grained identification. Experiments show our OSFGIR framework achieves significantly better accuracy and efficiency than existing FGVC and image retrieval methods, thus could be a better solution for large-scale fine-grained object identification.Comment: Accepted by MM2017, 9 pages, 7 figure

    Fine-grained Image Classification by Exploring Bipartite-Graph Labels

    Full text link
    Given a food image, can a fine-grained object recognition engine tell "which restaurant which dish" the food belongs to? Such ultra-fine grained image recognition is the key for many applications like search by images, but it is very challenging because it needs to discern subtle difference between classes while dealing with the scarcity of training data. Fortunately, the ultra-fine granularity naturally brings rich relationships among object classes. This paper proposes a novel approach to exploit the rich relationships through bipartite-graph labels (BGL). We show how to model BGL in an overall convolutional neural networks and the resulting system can be optimized through back-propagation. We also show that it is computationally efficient in inference thanks to the bipartite structure. To facilitate the study, we construct a new food benchmark dataset, which consists of 37,885 food images collected from 6 restaurants and totally 975 menus. Experimental results on this new food and three other datasets demonstrates BGL advances previous works in fine-grained object recognition. An online demo is available at http://www.f-zhou.com/fg_demo/

    Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

    Full text link
    Discriminative localization is essential for fine-grained image classification task, which devotes to recognizing hundreds of subcategories in the same basic-level category. Reflecting on discriminative regions of objects, key differences among different subcategories are subtle and local. Existing methods generally adopt a two-stage learning framework: The first stage is to localize the discriminative regions of objects, and the second is to encode the discriminative features for training classifiers. However, these methods generally have two limitations: (1) Separation of the two-stage learning is time-consuming. (2) Dependence on object and parts annotations for discriminative localization learning leads to heavily labor-consuming labeling. It is highly challenging to address these two important limitations simultaneously. Existing methods only focus on one of them. Therefore, this paper proposes the discriminative localization approach via saliency-guided Faster R-CNN to address the above two limitations at the same time, and our main novelties and advantages are: (1) End-to-end network based on Faster R-CNN is designed to simultaneously localize discriminative regions and encode discriminative features, which accelerates classification speed. (2) Saliency-guided localization learning is proposed to localize the discriminative region automatically, avoiding labor-consuming labeling. Both are jointly employed to simultaneously accelerate classification speed and eliminate dependence on object and parts annotations. Comparing with the state-of-the-art methods on the widely-used CUB-200-2011 dataset, our approach achieves both the best classification accuracy and efficiency.Comment: 9 pages, to appear in ACM MM 201

    Microgenesis, immediate experience and visual processes in reading

    Get PDF
    The concept of microgenesis refers to the development on a brief present-time scale of a percept, a thought, an object of imagination, or an expression. It defines the occurrence of immediate experience as dynamic unfolding and differentiation in which the ‘germ’ of the final experience is already embodied in the early stages of its development. Immediate experience typically concerns the focal experience of an object that is thematized as a ‘figure’ in the global field of consciousness; this can involve a percept, thought, object of imagination, or expression (verbal and/or gestural). Yet, whatever its modality or content, focal experience is postulated to develop and stabilize through dynamic differentiation and unfolding. Such a microgenetic description of immediate experience substantiates a phenomenological and genetic theory of cognition where any process of perception, thought, expression or imagination is primarily a process of genetic differentiation and development, rather than one of detection (of a stimulus array or information), transformation, and integration (of multiple primitive components) as theories of cognitivist kind have contended. My purpose in this essay is to provide an overview of the main constructs of microgenetic theory, to outline its potential avenues of future development in the field of cognitive science, and to illustrate an application of the theory to research, using visual processes in reading as an example
    • …
    corecore