1,664 research outputs found

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Weakly-supervised Part-Attention and Mentored Networks for Vehicle Re-Identification

    Full text link
    Vehicle re-identification (Re-ID) aims to retrieve images with the same vehicle ID across different cameras. Current part-level feature learning methods typically detect vehicle parts via uniform division, outside tools, or attention modeling. However, such part features often require expensive additional annotations and cause sub-optimal performance in case of unreliable part mask predictions. In this paper, we propose a weakly-supervised Part-Attention Network (PANet) and Part-Mentored Network (PMNet) for Vehicle Re-ID. Firstly, PANet localizes vehicle parts via part-relevant channel recalibration and cluster-based mask generation without vehicle part supervisory information. Secondly, PMNet leverages teacher-student guided learning to distill vehicle part-specific features from PANet and performs multi-scale global-part feature extraction. During inference, PMNet can adaptively extract discriminative part features without part localization by PANet, preventing unstable part mask predictions. We address this Re-ID issue as a multi-task problem and adopt Homoscedastic Uncertainty to learn the optimal weighing of ID losses. Experiments are conducted on two public benchmarks, showing that our approach outperforms recent methods, which require no extra annotations by an average increase of 3.0% in CMC@5 on VehicleID and over 1.4% in mAP on VeRi776. Moreover, our method can extend to the occluded vehicle Re-ID task and exhibits good generalization ability.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore