74,050 research outputs found
Complexity of coalition structure generation
We revisit the coalition structure generation problem in which the goal is to
partition the players into exhaustive and disjoint coalitions so as to maximize
the social welfare. One of our key results is a general polynomial-time
algorithm to solve the problem for all coalitional games provided that player
types are known and the number of player types is bounded by a constant. As a
corollary, we obtain a polynomial-time algorithm to compute an optimal
partition for weighted voting games with a constant number of weight values and
for coalitional skill games with a constant number of skills. We also consider
well-studied and well-motivated coalitional games defined compactly on
combinatorial domains. For these games, we characterize the complexity of
computing an optimal coalition structure by presenting polynomial-time
algorithms, approximation algorithms, or NP-hardness and inapproximability
lower bounds.Comment: 17 page
Multilevel Threshold Secret and Function Sharing based on the Chinese Remainder Theorem
A recent work of Harn and Fuyou presents the first multilevel (disjunctive)
threshold secret sharing scheme based on the Chinese Remainder Theorem. In this
work, we first show that the proposed method is not secure and also fails to
work with a certain natural setting of the threshold values on compartments. We
then propose a secure scheme that works for all threshold settings. In this
scheme, we employ a refined version of Asmuth-Bloom secret sharing with a
special and generic Asmuth-Bloom sequence called the {\it anchor sequence}.
Based on this idea, we also propose the first multilevel conjunctive threshold
secret sharing scheme based on the Chinese Remainder Theorem. Lastly, we
discuss how the proposed schemes can be used for multilevel threshold function
sharing by employing it in a threshold RSA cryptosystem as an example
Socially Trusted Collaborative Edge Computing in Ultra Dense Networks
Small cell base stations (SBSs) endowed with cloud-like computing
capabilities are considered as a key enabler of edge computing (EC), which
provides ultra-low latency and location-awareness for a variety of emerging
mobile applications and the Internet of Things. However, due to the limited
computation resources of an individual SBS, providing computation services of
high quality to its users faces significant challenges when it is overloaded
with an excessive amount of computation workload. In this paper, we propose
collaborative edge computing among SBSs by forming SBS coalitions to share
computation resources with each other, thereby accommodating more computation
workload in the edge system and reducing reliance on the remote cloud. A novel
SBS coalition formation algorithm is developed based on the coalitional game
theory to cope with various new challenges in small-cell-based edge systems,
including the co-provisioning of radio access and computing services,
cooperation incentives, and potential security risks. To address these
challenges, the proposed method (1) allows collaboration at both the user-SBS
association stage and the SBS peer offloading stage by exploiting the ultra
dense deployment of SBSs, (2) develops a payment-based incentive mechanism that
implements proportionally fair utility division to form stable SBS coalitions,
and (3) builds a social trust network for managing security risks among SBSs
due to collaboration. Systematic simulations in practical scenarios are carried
out to evaluate the efficacy and performance of the proposed method, which
shows that tremendous edge computing performance improvement can be achieved.Comment: arXiv admin note: text overlap with arXiv:1010.4501 by other author
A hybrid algorithm for coalition structure generation
The current state-of-the-art algorithm for optimal coalition structure generation is IDP-IP—an algorithm that combines IDP (a dynamic programming algorithm due to Rahwan and Jennings, 2008b) with IP (a tree-search algorithm due to Rahwan et al., 2009). In this paper we analyse IDP-IP, highlight its limitations, and then develop a new approach for combining IDP with IP that overcomes these limitations
US/UK Mental Models of Planning: The Relationship Between Plan Detail and Plan Quality
This paper presents the results of a research study applying a new cultural analysis method to capture commonalities and differences between US and UK mental models of operational planning. The results demonstrate the existence of fundamental differences between the way US and UK planners think about what it means to have a high quality plan. Specifically, the present study captures differences in how US and UK planners conceptualize plan quality. Explicit models of cultural differences in conceptions of plan quality are useful for establishing performance metrics for multinational planning teams. This paper discusses the prospects of enabling automatic evaluation of multinational team performance by combining recent advances in cultural modelling with enhanced ontology languages
On the convergence of autonomous agent communities
This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category
Correlation Clustering Based Coalition Formation For Multi-Robot Task Allocation
In this paper, we study the multi-robot task allocation problem where a group
of robots needs to be allocated to a set of tasks so that the tasks can be
finished optimally. One task may need more than one robot to finish it.
Therefore the robots need to form coalitions to complete these tasks.
Multi-robot coalition formation for task allocation is a well-known NP-hard
problem. To solve this problem, we use a linear-programming based graph
partitioning approach along with a region growing strategy which allocates
(near) optimal robot coalitions to tasks in a negligible amount of time. Our
proposed algorithm is fast (only taking 230 secs. for 100 robots and 10 tasks)
and it also finds a near-optimal solution (up to 97.66% of the optimal). We
have empirically demonstrated that the proposed approach in this paper always
finds a solution which is closer (up to 9.1 times) to the optimal solution than
a theoretical worst-case bound proved in an earlier work
- …
