3 research outputs found

    Contextually Guided Semantic Labeling and Search for 3D Point Clouds

    Full text link
    RGB-D cameras, which give an RGB image to- gether with depths, are becoming increasingly popular for robotic perception. In this paper, we address the task of detecting commonly found objects in the 3D point cloud of indoor scenes obtained from such cameras. Our method uses a graphical model that captures various features and contextual relations, including the local visual appearance and shape cues, object co-occurence relationships and geometric relationships. With a large number of object classes and relations, the model's parsimony becomes important and we address that by using multiple types of edge potentials. We train the model using a maximum-margin learning approach. In our experiments over a total of 52 3D scenes of homes and offices (composed from about 550 views), we get a performance of 84.06% and 73.38% in labeling office and home scenes respectively for 17 object classes each. We also present a method for a robot to search for an object using the learned model and the contextual information available from the current labelings of the scene. We applied this algorithm successfully on a mobile robot for the task of finding 12 object classes in 10 different offices and achieved a precision of 97.56% with 78.43% recall.Comment: arXiv admin note: substantial text overlap with arXiv:1106.555

    Co-evolutionary predictors for kinematic pose inference from rgbd images

    No full text
    Markerless pose inference of arbitrary subjects is a primary problem for a variety of applications, including robot vision and teaching by demonstration. Unsupervised kinematic pose inference is an ideal method for these applications as it provides a robust, training-free approach with minimal reliance on prior information. However, these methods have been considered intractable for complex models. This paper presentsageneralframeworkforinferringposesfromasingle depth image given an arbitrary kinematic structure without prior training. A co-evolutionary algorithm, consisting of pose and predictor populations, is applied to overcome the traditional limitations in kinematic pose inference. Evaluated on test sets of 256 synthetic and 52 real images, our algorithm shows consistent pose inference for 34 and 78 degree of freedom models with point clouds containing over 40,000 points, even in cases of significant self-occlusion. Compared to various baselines, the co-evolutionary algorithm provides at least a 3.5-fold increase in pose accuracy and a two-fold reduction in computational effort for articulated models

    Co-evolutionary predictors for kinematic pose inference from rgbd images

    No full text
    Markerless pose inference of arbitrary subjects is a primary problem for a variety of applications, including robot vision and teaching by demonstration. Unsupervised kinematic pose inference is an ideal method for these applications as it provides a robust, training-free approach with minimal reliance on prior information. However, these methods have been considered intractable for complex models. This paper presentsageneralframeworkforinferringposesfromasingle depth image given an arbitrary kinematic structure without prior training. A co-evolutionary algorithm, consisting of pose and predictor populations, is applied to overcome the traditional limitations in kinematic pose inference. Evaluated on test sets of 256 synthetic and 52 real images, our algorithm shows consistent pose inference for 34 and 78 degree of freedom models with point clouds containing over 40,000 points, even in cases of significant self-occlusion. Compared to various baselines, the co-evolutionary algorithm provides at least a 3.5-fold increase in pose accuracy and a two-fold reduction in computational effort for articulated models. Categories andSubjectDescriptor
    corecore