47 research outputs found

    Exploring Gender Role in Co-Authorship Networks for Computing Books: A Case Study in DBLP

    Get PDF
    Social network analysis and mining intend to explore for certain, previously unknown, and probably useful relational information from social and information networks. In our case, the research paper is about identifying collaborative networks between the authors (co-authors) of Computer Science books with the highlighted focus on the women computer scientist’s community. Often the hardest part of collaborating is knowing whom you should be collaborating with. Hence, this study will tackle this issue and will identify, and present a visualization of the co-authors which have already collaborated and how often they have collaborated. In this way, we are going to distinguish the successful collaboration between co-authors, the trend of further collaboration between them and the participation of women on these collaborations. This paper is research which is based on detailed and intensive analysis of the different ways of identifying these kinds of connections through secondary material. This work is licensed under a&nbsp;Creative Commons Attribution-NonCommercial 4.0 International License.</p

    Predicting Anchor Links between Heterogeneous Social Networks

    Full text link
    People usually get involved in multiple social networks to enjoy new services or to fulfill their needs. Many new social networks try to attract users of other existing networks to increase the number of their users. Once a user (called source user) of a social network (called source network) joins a new social network (called target network), a new inter-network link (called anchor link) is formed between the source and target networks. In this paper, we concentrated on predicting the formation of such anchor links between heterogeneous social networks. Unlike conventional link prediction problems in which the formation of a link between two existing users within a single network is predicted, in anchor link prediction, the target user is missing and will be added to the target network once the anchor link is created. To solve this problem, we use meta-paths as a powerful tool for utilizing heterogeneous information in both the source and target networks. To this end, we propose an effective general meta-path-based approach called Connector and Recursive Meta-Paths (CRMP). By using those two different categories of meta-paths, we model different aspects of social factors that may affect a source user to join the target network, resulting in the formation of a new anchor link. Extensive experiments on real-world heterogeneous social networks demonstrate the effectiveness of the proposed method against the recent methods.Comment: To be published in "Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

    Organizational Chart Inference

    Full text link
    Nowadays, to facilitate the communication and cooperation among employees, a new family of online social networks has been adopted in many companies, which are called the "enterprise social networks" (ESNs). ESNs can provide employees with various professional services to help them deal with daily work issues. Meanwhile, employees in companies are usually organized into different hierarchies according to the relative ranks of their positions. The company internal management structure can be outlined with the organizational chart visually, which is normally confidential to the public out of the privacy and security concerns. In this paper, we want to study the IOC (Inference of Organizational Chart) problem to identify company internal organizational chart based on the heterogeneous online ESN launched in it. IOC is very challenging to address as, to guarantee smooth operations, the internal organizational charts of companies need to meet certain structural requirements (about its depth and width). To solve the IOC problem, a novel unsupervised method Create (ChArT REcovEr) is proposed in this paper, which consists of 3 steps: (1) social stratification of ESN users into different social classes, (2) supervision link inference from managers to subordinates, and (3) consecutive social classes matching to prune the redundant supervision links. Extensive experiments conducted on real-world online ESN dataset demonstrate that Create can perform very well in addressing the IOC problem.Comment: 10 pages, 9 figures, 1 table. The paper is accepted by KDD 201

    Predicting Social Links for New Users across Aligned Heterogeneous Social Networks

    Full text link
    Online social networks have gained great success in recent years and many of them involve multiple kinds of nodes and complex relationships. Among these relationships, social links among users are of great importance. Many existing link prediction methods focus on predicting social links that will appear in the future among all users based upon a snapshot of the social network. In real-world social networks, many new users are joining in the service every day. Predicting links for new users are more important. Different from conventional link prediction problems, link prediction for new users are more challenging due to the following reasons: (1) differences in information distributions between new users and the existing active users (i.e., old users); (2) lack of information from the new users in the network. We propose a link prediction method called SCAN-PS (Supervised Cross Aligned Networks link prediction with Personalized Sampling), to solve the link prediction problem for new users with information transferred from both the existing active users in the target network and other source networks through aligned accounts. We proposed a within-target-network personalized sampling method to process the existing active users' information in order to accommodate the differences in information distributions before the intra-network knowledge transfer. SCAN-PS can also exploit information in other source networks, where the user accounts are aligned with the target network. In this way, SCAN-PS could solve the cold start problem when information of these new users is total absent in the target network.Comment: 11 pages, 10 figures, 4 table

    The Child is Father of the Man: Foresee the Success at the Early Stage

    Full text link
    Understanding the dynamic mechanisms that drive the high-impact scientific work (e.g., research papers, patents) is a long-debated research topic and has many important implications, ranging from personal career development and recruitment search, to the jurisdiction of research resources. Recent advances in characterizing and modeling scientific success have made it possible to forecast the long-term impact of scientific work, where data mining techniques, supervised learning in particular, play an essential role. Despite much progress, several key algorithmic challenges in relation to predicting long-term scientific impact have largely remained open. In this paper, we propose a joint predictive model to forecast the long-term scientific impact at the early stage, which simultaneously addresses a number of these open challenges, including the scholarly feature design, the non-linearity, the domain-heterogeneity and dynamics. In particular, we formulate it as a regularized optimization problem and propose effective and scalable algorithms to solve it. We perform extensive empirical evaluations on large, real scholarly data sets to validate the effectiveness and the efficiency of our method.Comment: Correct some typos in our KDD pape
    corecore