11 research outputs found

    DCA: Diversified Co-Attention towards Informative Live Video Commenting

    Full text link
    We focus on the task of Automatic Live Video Commenting (ALVC), which aims to generate real-time video comments with both video frames and other viewers' comments as inputs. A major challenge in this task is how to properly leverage the rich and diverse information carried by video and text. In this paper, we aim to collect diversified information from video and text for informative comment generation. To achieve this, we propose a Diversified Co-Attention (DCA) model for this task. Our model builds bidirectional interactions between video frames and surrounding comments from multiple perspectives via metric learning, to collect a diversified and informative context for comment generation. We also propose an effective parameter orthogonalization technique to avoid excessive overlap of information learned from different perspectives. Results show that our approach outperforms existing methods in the ALVC task, achieving new state-of-the-art results

    LCCo: Lending CLIP to Co-Segmentation

    Full text link
    This paper studies co-segmenting the common semantic object in a set of images. Existing works either rely on carefully engineered networks to mine the implicit semantic information in visual features or require extra data (i.e., classification labels) for training. In this paper, we leverage the contrastive language-image pre-training framework (CLIP) for the task. With a backbone segmentation network that independently processes each image from the set, we introduce semantics from CLIP into the backbone features, refining them in a coarse-to-fine manner with three key modules: i) an image set feature correspondence module, encoding global consistent semantic information of the image set; ii) a CLIP interaction module, using CLIP-mined common semantics of the image set to refine the backbone feature; iii) a CLIP regularization module, drawing CLIP towards this co-segmentation task, identifying the best CLIP semantic and using it to regularize the backbone feature. Experiments on four standard co-segmentation benchmark datasets show that the performance of our method outperforms state-of-the-art methods

    Deep Semantic Matching with Foreground Detection and Cycle-Consistency

    Full text link
    Establishing dense semantic correspondences between object instances remains a challenging problem due to background clutter, significant scale and pose differences, and large intra-class variations. In this paper, we address weakly supervised semantic matching based on a deep network where only image pairs without manual keypoint correspondence annotations are provided. To facilitate network training with this weaker form of supervision, we 1) explicitly estimate the foreground regions to suppress the effect of background clutter and 2) develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent. We train the proposed model using the PF-PASCAL dataset and evaluate the performance on the PF-PASCAL, PF-WILLOW, and TSS datasets. Extensive experimental results show that the proposed approach performs favorably against the state-of-the-art methods.Comment: ACCV 2018. PAMI 2020 extension: arXiv:1906.0585

    Unsupervised and semi-supervised co-salient object detection via segmentation frequency statistics

    Full text link
    In this paper, we address the detection of co-occurring salient objects (CoSOD) in an image group using frequency statistics in an unsupervised manner, which further enable us to develop a semi-supervised method. While previous works have mostly focused on fully supervised CoSOD, less attention has been allocated to detecting co-salient objects when limited segmentation annotations are available for training. Our simple yet effective unsupervised method US-CoSOD combines the object co-occurrence frequency statistics of unsupervised single-image semantic segmentations with salient foreground detections using self-supervised feature learning. For the first time, we show that a large unlabeled dataset e.g. ImageNet-1k can be effectively leveraged to significantly improve unsupervised CoSOD performance. Our unsupervised model is a great pre-training initialization for our semi-supervised model SS-CoSOD, especially when very limited labeled data is available for training. To avoid propagating erroneous signals from predictions on unlabeled data, we propose a confidence estimation module to guide our semi-supervised training. Extensive experiments on three CoSOD benchmark datasets show that both of our unsupervised and semi-supervised models outperform the corresponding state-of-the-art models by a significant margin (e.g., on the Cosal2015 dataset, our US-CoSOD model has an 8.8% F-measure gain over a SOTA unsupervised co-segmentation model and our SS-CoSOD model has an 11.81% F-measure gain over a SOTA semi-supervised CoSOD model).Comment: Accepted at IEEE WACV 202
    corecore