263,420 research outputs found
Short-segment heart sound classification using an ensemble of deep convolutional neural networks
This paper proposes a framework based on deep convolutional neural networks
(CNNs) for automatic heart sound classification using short-segments of
individual heart beats. We design a 1D-CNN that directly learns features from
raw heart-sound signals, and a 2D-CNN that takes inputs of two- dimensional
time-frequency feature maps based on Mel-frequency cepstral coefficients
(MFCC). We further develop a time-frequency CNN ensemble (TF-ECNN) combining
the 1D-CNN and 2D-CNN based on score-level fusion of the class probabilities.
On the large PhysioNet CinC challenge 2016 database, the proposed CNN models
outperformed traditional classifiers based on support vector machine and hidden
Markov models with various hand-crafted time- and frequency-domain features.
Best classification scores with 89.22% accuracy and 89.94% sensitivity were
achieved by the ECNN, and 91.55% specificity and 88.82% modified accuracy by
the 2D-CNN alone on the test set.Comment: 8 pages, 1 figure, conferenc
Non-linear coupled CNN models for multiscale image analysis
A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs,for approximating a large class of nonlinear isotropic and/or anisotropic PDEs. The global dynamics of spacediscrete polynomial CNN models is analyzed and compared with the dynamic behavior of the corresponding space-continuous PDE models. It is shown that in the isotropic case the two models are not topologically equivalent: in particular discrete CNN models allow one to obtain the output image without stopping the image evolution after a given time (scale). This property represents an advantage with respect to continuous PDE models and could simplify some image preprocessing algorithm
- …
