7,528 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A Multiple Classifier System Identifies Novel Cannabinoid CB2 Receptor Ligands

    Get PDF
    open access articleDrugs have become an essential part of our lives due to their ability to improve people’s health and quality of life. However, for many diseases, approved drugs are not yet available or existing drugs have undesirable side effects, making the pharmaceutical industry strive to discover new drugs and active compounds. The development of drugs is an expensive process, which typically starts with the detection of candidate molecules (screening) for an identified protein target. To this end, the use of high-performance screening techniques has become a critical issue in order to palliate the high costs. Therefore, the popularity of computer-based screening (often called virtual screening or in-silico screening) has rapidly increased during the last decade. A wide variety of Machine Learning (ML) techniques has been used in conjunction with chemical structure and physicochemical properties for screening purposes including (i) simple classifiers, (ii) ensemble methods, and more recently (iii) Multiple Classifier Systems (MCS). In this work, we apply an MCS for virtual screening (D2-MCS) using circular fingerprints. We applied our technique to a dataset of cannabinoid CB2 ligands obtained from the ChEMBL database. The HTS collection of Enamine (1.834.362 compounds), was virtually screened to identify 48.432 potential active molecules using D2-MCS. This list was subsequently clustered based on circular fingerprints and from each cluster, the most active compound was maintained. From these, the top 60 were kept, and 21 novel compounds were purchased. Experimental validation confirmed six highly active hits (>50% displacement at 10 μM and subsequent Ki determination) and an additional five medium active hits (>25% displacement at 10 μM). D2-MCS hence provided a hit rate of 29% for highly active compounds and an overall hit rate of 52%

    Analysis of group evolution prediction in complex networks

    Full text link
    In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic and mutli-stage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization

    Full text link
    Undetected overfitting can occur when there are significant redundancies between training and validation data. We describe AVE, a new measure of training-validation redundancy for ligand-based classification problems that accounts for the similarity amongst inactive molecules as well as active. We investigated seven widely-used benchmarks for virtual screening and classification, and show that the amount of AVE bias strongly correlates with the performance of ligand-based predictive methods irrespective of the predicted property, chemical fingerprint, similarity measure, or previously-applied unbiasing techniques. Therefore, it may be that the previously-reported performance of most ligand-based methods can be explained by overfitting to benchmarks rather than good prospective accuracy

    Applications of Machine Learning to Optimizing Polyolefin Manufacturing

    Full text link
    This chapter is a preprint from our book by , focusing on leveraging machine learning (ML) in chemical and polyolefin manufacturing optimization. It's crafted for both novices and seasoned professionals keen on the latest ML applications in chemical processes. We trace the evolution of AI and ML in chemical industries, delineate core ML components, and provide resources for ML beginners. A detailed discussion on various ML methods is presented, covering regression, classification, and unsupervised learning techniques, with performance metrics and examples. Ensemble methods, deep learning networks, including MLP, DNNs, RNNs, CNNs, and transformers, are explored for their growing role in chemical applications. Practical workshops guide readers through predictive modeling using advanced ML algorithms. The chapter culminates with insights into science-guided ML, advocating for a hybrid approach that enhances model accuracy. The extensive bibliography offers resources for further research and practical implementation. This chapter aims to be a thorough primer on ML's practical application in chemical engineering, particularly for polyolefin production, and sets the stage for continued learning in subsequent chapters. Please cite the original work [169,170] when referencing
    • …
    corecore