4 research outputs found

    2D Shape Recognition Using Information Theoretic Kernels

    Full text link
    In this paper, a novel approach for contour-based 2D shape recognition is proposed, using a recently intro-duced class of information theoretic kernels. This kind of kernels, based on a non-extensive generalization of the classical Shannon information theory, are defined on probability measures. In the proposed approach, chain code representations are first extracted from the contours; then n-gram statistics are computed and used as input to the information theoretic kernels. We tested different versions of such kernels, using support vector machine and nearest neighbor classifiers. An experi-mental evaluation on the chicken pieces dataset shows that the proposed approach outperforms the current state-of-the-art methods. 1

    Generative Embedding for Model-Based Classification of fMRI Data

    Get PDF
    Decoding models, such as those underlying multivariate classification algorithms, have been increasingly used to infer cognitive or clinical brain states from measures of brain activity obtained by functional magnetic resonance imaging (fMRI). The practicality of current classifiers, however, is restricted by two major challenges. First, due to the high data dimensionality and low sample size, algorithms struggle to separate informative from uninformative features, resulting in poor generalization performance. Second, popular discriminative methods such as support vector machines (SVMs) rarely afford mechanistic interpretability. In this paper, we address these issues by proposing a novel generative-embedding approach that incorporates neurobiologically interpretable generative models into discriminative classifiers. Our approach extends previous work on trial-by-trial classification for electrophysiological recordings to subject-by-subject classification for fMRI and offers two key advantages over conventional methods: it may provide more accurate predictions by exploiting discriminative information encoded in ‘hidden’ physiological quantities such as synaptic connection strengths; and it affords mechanistic interpretability of clinical classifications. Here, we introduce generative embedding for fMRI using a combination of dynamic causal models (DCMs) and SVMs. We propose a general procedure of DCM-based generative embedding for subject-wise classification, provide a concrete implementation, and suggest good-practice guidelines for unbiased application of generative embedding in the context of fMRI. We illustrate the utility of our approach by a clinical example in which we classify moderately aphasic patients and healthy controls using a DCM of thalamo-temporal regions during speech processing. Generative embedding achieves a near-perfect balanced classification accuracy of 98% and significantly outperforms conventional activation-based and correlation-based methods. This example demonstrates how disease states can be detected with very high accuracy and, at the same time, be interpreted mechanistically in terms of abnormalities in connectivity. We envisage that future applications of generative embedding may provide crucial advances in dissecting spectrum disorders into physiologically more well-defined subgroups

    An enhanced performance model for metamorphic computer virus classification and detectioN

    Get PDF
    Metamorphic computer virus employs various code mutation techniques to change its code to become new generations. These generations have similar behavior and functionality and yet, they could not be detected by most commercial antivirus because their solutions depend on a signature database and make use of string signature-based detection methods. However, the antivirus detection engine can be avoided by metamorphism techniques. The purpose of this study is to develop a performance model based on computer virus classification and detection. The model would also be able to examine portable executable files that would classify and detect metamorphic computer viruses. A Hidden Markov Model implemented on portable executable files was employed to classify and detect the metamorphic viruses. This proposed model that produce common virus statistical patterns was evaluated by comparing the results with previous related works and famous commercial antiviruses. This was done by investigating the metamorphic computer viruses and their features, and the existing classifications and detection methods. Specifically, this model was applied on binary format of portable executable files and it was able to classify if the files belonged to a virus family. Besides that, the performance of the model, practically implemented and tested, was also evaluated based on detection rate and overall accuracy. The findings indicated that the proposed model is able to classify and detect the metamorphic virus variants in portable executable file format with a high average of 99.7% detection rate. The implementation of the model is proven useful and applicable for antivirus programs
    corecore