21 research outputs found

    Clustering Gene Expression Data using Continuous Markov Models

    Get PDF

    A review of dynamic Bayesian network techniques with applications in healthcare risk modelling

    Get PDF
    Coping with an ageing population is a major concern for healthcare organisations around the world. The average cost of hospital care is higher than social care for older and terminally ill patients. Moreover, the average cost of social care increases with the age of the patient. Therefore, it is important to make efficient and fair capacity planning which also incorporates patient centred outcomes. Predictive models can provide predictions which their accuracy can be understood and quantified. Predictive modelling can help patients and carers to get the appropriate support services, and allow clinical decision-makers to improve care quality and reduce the cost of inappropriate hospital and Accident and Emergency admissions. The aim of this study is to provide a review of modelling techniques and frameworks for predictive risk modelling of patients in hospital, based on routinely collected data such as the Hospital Episode Statistics database. A number of sub-problems can be considered such as Length-of-Stay and End-of-Life predictive modelling. The methodologies in the literature are mainly focused on addressing the problems using regression methods and Markov models, and the majority lack generalisability. In some cases, the robustness, accuracy and re-usability of predictive risk models have been shown to be improved using Machine Learning methods. Dynamic Bayesian Network techniques can represent complex correlations models and include small probabilities into the solution. The main focus of this study is to provide a review of major time-varying Dynamic Bayesian Network techniques with applications in healthcare predictive risk modelling

    Markov and Semi-markov Chains, Processes, Systems and Emerging Related Fields

    Get PDF
    This book covers a broad range of research results in the field of Markov and Semi-Markov chains, processes, systems and related emerging fields. The authors of the included research papers are well-known researchers in their field. The book presents the state-of-the-art and ideas for further research for theorists in the fields. Nonetheless, it also provides straightforwardly applicable results for diverse areas of practitioners

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Towards large deviations in stochastic systems with memory

    Get PDF
    supported by QMUL Research-IT and funded by EPSRC Grant No. EP/K000128/1.The theory of large deviations can help to shed light on systems in non-equilibrium statistical mechanics and, more generically, on non-reversible stochastic processes. For this purpose, we target trajectories in space time rather than static con figurations and study time-extensive observables. This suggests that the details of the evolution law such as the presence of time correlations take on a major role. In this thesis, we investigate selected models with stochastic dynamics that incorporate memory by means of diff erent mechanisms, devise a numerical approach for such models, and quantify to what extent the memory aff ects the large deviation functionals. The results are relevant for real-world situations, where simpli ed memoryless (Markovian) models may not always be appropriate. After an original introduction to the mathematics of stochastic processes, we explore, analytically and numerically, an open-boundary zero-range process which incorporates memory by means of hidden variables that a ect particle congestion. We derive the exact solution for the steady state of the one-site system, as well as a mean- eld approximation for larger one-dimensional lattices. Then, we focus on the large deviation properties of the particle current in such a system. This reveals that the time correlations can be apparently absorbed in a memoryless description for the steady state and the small uctuation regime. However, they can dramatically alter the probability of rare currents. Di erent regimes are separated by dynamical phase transitions. Subsequently, we address systems in which the memory cannot be encoded in hidden variables or the waiting-time distributions depend on the whole trajectory. Here, the di culty in obtaining exact analytical results is exacerbated. To tackle these systems, we have proposed a version of the so-called \cloning" algorithm for the evaluation of large deviations that can be applied consistently for both Markovian and non-Markovian dynamics. The e cacy of this approach is con rmed by numerical results for some of the rare non-Markovian models whose large deviation functions can be obtained exactly. We nally adapt this machinery to a technological problem, speci cally the performance evaluation of communication systems, where temporal correlations and large deviations are important.EPSRC Grant No. EP/K000128/1

    Predictive Risk Modelling of Hospital Emergency Readmission, and Temporal Comorbidity Index Modelling Using Machine Learning Methods

    Get PDF
    This thesis considers applications of machine learning techniques in hospital emergency readmission and comorbidity risk problems, using healthcare administrative data. The aim is to introduce generic and robust solution approaches that can be applied to different healthcare settings. Existing solution methods and techniques of predictive risk modelling of hospital emergency readmission and comorbidity risk modelling are reviewed. Several modelling approaches, including Logistic Regression, Bayes Point Machine, Random Forest and Deep Neural Network are considered. Firstly, a framework is proposed for pre-processing hospital administrative data, including data preparation, feature generation and feature selection. Then, the Ensemble Risk Modelling of Hospital Readmission (ERMER) is presented, which is a generative ensemble risk model of hospital readmission model. After that, the Temporal-Comorbidity Adjusted Risk of Emergency Readmission (T-CARER) is presented for identifying very sick comorbid patients. A Random Forest and a Deep Neural Network are used to model risks of temporal comorbidity, operations and complications of patients using the T-CARER. The computational results and benchmarking are presented using real data from Hospital Episode Statistics (HES) with several samples across a ten-year period. The models select features from a large pool of generated features, add temporal dimensions into the models and provide highly accurate and precise models of problems with complex structures. The performances of all the models have been evaluated across different timeframes, sub-populations and samples, as well as previous models

    Workload Modeling for Computer Systems Performance Evaluation

    Full text link
    corecore