81,956 research outputs found

    The Correlation Function of Rich Clusters of Galaxies in CDM-like Models

    Full text link
    We use ensembles of high-resolution CDM simulations to investigate the shape and amplitude of the two point correlation function of rich clusters. The standard scale-invariant CDM model with Ω=1\Omega=1 provides a poor description of the clustering measured from the APM rich cluster redshift survey, which is better fitted by models with more power at large scales. The amplitudes of the rich cluster correlation functions measured from our models depend weakly on cluster richness. Analytic calculations of the clustering of peaks in a Gaussian density field overestimate the amplitude of the N-body cluster correlation functions, but reproduce qualitatively the weak trend with cluster richness. Our results suggest that the high amplitude measured for the correlation function of richness class R≄2R \geq 2 Abell clusters is either an artefact arising from incompleteness in the Abell catalogue, or an indication that the density perturbations in the early universe were very non-Gaussian.Comment: uuencoded compressed postscript ,MNRAS, in press, OUAST-93-1

    Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering

    Full text link
    Galaxy formation inside dark matter halos, as well as the halo formation itself, can be affected by large-scale environments. Evaluating the imprints of environmental effects on galaxy clustering is crucial for precise cosmological constraints with data from galaxy redshift surveys. We investigate such an environmental impact on both real-space and redshift-space galaxy clustering statistics using a semi-analytic model derived from the Millennium Simulation. We compare clustering statistics from original SAM galaxy samples and shuffled ones with environmental influence on galaxy properties eliminated. Among the luminosity-threshold samples examined, the one with the lowest threshold luminosity (~0.2L_*) is affected by environmental effects the most, which has a ~10% decrease in the real-space two-point correlation function (2PCF) after shuffling. By decomposing the 2PCF into five different components based on the source of pairs, we show that the change in the 2PCF can be explained by the age and richness dependence of halo clustering. The 2PCFs in redshift space are found to change in a similar manner after shuffling. If the environmental effects are neglected, halo occupation distribution modeling of the real-space and redshift-space clustering may have a less than 6.5% systematic uncertainty in constraining beta from the most affected SAM sample and have substantially smaller uncertainties from the other, more luminous samples. We argue that the effect could be even smaller in reality. In the Appendix, we present a method to decompose the 2PCF, which can be applied to measure the two-point auto-correlation functions of galaxy sub-samples in a volume-limited galaxy sample and their two-point cross-correlation functions in a single run utilizing only one random catalog.Comment: 13 pages, 6 figures, Accepted by AP

    Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions

    Get PDF
    We present an analytic model for the fully nonlinear power spectrum P and bispectrum Q of the cosmological mass density field. The model is based on physical properties of dark matter halos, with the three main model inputs being analytic halo density profiles, halo mass functions, and halo-halo spatial correlations, each of which has been well studied in the literature. We demonstrate that this new model can reproduce the power spectrum and bispectrum computed from cosmological simulations of both an n=-2 scale-free model and a low-density cold dark matter model. To enhance the dynamic range of these large simulations, we use the synthetic halo replacement technique of Ma & Fry (2000a), where the original halos with numerically softened cores are replaced by synthetic halos of realistic density profiles. At high wavenumbers, our model predicts a slope for the nonlinear power spectrum different from the often-used fitting formulas in the literature based on the stable clustering assumption. Our model also predicts a three-point amplitude Q that is scale dependent, in contrast to the popular hierarchical clustering assumption. This model provides a rapid way to compute the mass power spectrum and bispectrum over all length scales where the input halo properties are valid. It also provides a physical interpretation of the clustering properties of matter in the universe.Comment: Final version to appear in the Astrophysical Journal 544 (2000). Minor revisions; 1 additional figure. 25 pages with 6 inserted figure

    Dynamic quantum clustering: a method for visual exploration of structures in data

    Full text link
    A given set of data-points in some feature space may be associated with a Schrodinger equation whose potential is determined by the data. This is known to lead to good clustering solutions. Here we extend this approach into a full-fledged dynamical scheme using a time-dependent Schrodinger equation. Moreover, we approximate this Hamiltonian formalism by a truncated calculation within a set of Gaussian wave functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition or feature filtering.Comment: 15 pages, 9 figure
    • 

    corecore