7,398 research outputs found

    Multi-capacity bin packing with dependent items and its application to the packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP) problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem , and we evaluate its efficiency using simulations on various application workloads, and network models.This work was done while author was at Boston University. It was partially supported by NSF CISE awards #1430145, #1414119, #1239021 and #1012798. (1430145 - NSF CISE; 1414119 - NSF CISE; 1239021 - NSF CISE; 1012798 - NSF CISE

    Network-constrained packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources.With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP)problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem, and we evaluate its efficiency using simulations on various application workloads, and network models.This work is supported by NSF CISE CNS Award #1347522, # 1239021, # 1012798

    End-to-end informed VM selection in compute clouds

    Full text link
    The selection of resources, particularly VMs, in current public IaaS clouds is usually done in a blind fashion, as cloud users do not have much information about resource consumption by co-tenant third-party tasks. In particular, communication patterns can play a significant part in cloud application performance and responsiveness, specially in the case of novel latencysensitive applications, increasingly common in today’s clouds. Thus, herein we propose an end-to-end approach to the VM allocation problem using policies based uniquely on round-trip time measurements between VMs. Those become part of a userlevel ‘Recommender Service’ that receives VM allocation requests with certain network-related demands and matches them to a suitable subset of VMs available to the user within the cloud. We propose and implement end-to-end algorithms for VM selection that cover desirable profiles of communications between VMs in distributed applications in a cloud setting, such as profiles with prevailing pair-wise, hub-and-spokes, or clustered communication patterns between constituent VMs. We quantify the expected benefits from deploying our Recommender Service by comparing our informed VM allocation approaches to conventional, random allocation methods, based on real measurements of latencies between Amazon EC2 instances. We also show that our approach is completely independent from cloud architecture details, is adaptable to different types of applications and workloads, and is lightweight and transparent to cloud providers.This work is supported in part by the National Science Foundation under grant CNS-0963974

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud

    Get PDF
    Data-centric workflows naturally process and analyze a huge volume of datasets. In this new era of Big Data there is a growing need to enable data-centric workflows to perform computations at a scale far exceeding a single workstation\u27s capabilities. Therefore, this type of applications can benefit from distributed high performance computing (HPC) infrastructures like cluster, grid or cloud computing. Although data-centric workflows have been applied extensively to structure complex scientific data analysis processes, they fail to address the big data challenges as well as leverage the capability of dynamic resource provisioning in the Cloud. The concept of “big data workflows” is proposed by our research group as the next generation of data-centric workflow technologies to address the limitations of exist-ing workflows technologies in addressing big data challenges. Executing big data workflows in the Cloud is a challenging problem as work-flow tasks and data are required to be partitioned, distributed and assigned to the cloud execution sites (multiple virtual machines). In running such big data work-flows in the cloud distributed across several physical locations, the workflow execution time and the cloud resource utilization efficiency highly depends on the initial placement and distribution of the workflow tasks and datasets across the multiple virtual machines in the Cloud. Several workflow management systems have been developed for scientists to facilitate the use of workflows; however, data and work-flow task placement issue has not been sufficiently addressed yet. In this dissertation, I propose BDAP strategy (Big Data Placement strategy) for data placement and TPS (Task Placement Strategy) for task placement, which improve workflow performance by minimizing data movement across multiple virtual machines in the Cloud during the workflow execution. In addition, I propose CATS (Cultural Algorithm Task Scheduling) for workflow scheduling, which improve workflow performance by minimizing workflow execution cost. In this dissertation, I 1) formalize data and task placement problems in workflows, 2) propose a data placement algorithm that considers both initial input dataset and intermediate datasets obtained during workflow run, 3) propose a task placement algorithm that considers placement of workflow tasks before workflow run, 4) propose a workflow scheduling strategy to minimize the workflow execution cost once the deadline is provided by user and 5)perform extensive experiments in the distributed environment to validate that our proposed strategies provide an effective data and task placement solution to distribute and place big datasets and tasks into the appropriate virtual machines in the Cloud within reasonable time
    corecore