180 research outputs found

    Large-Margin Determinantal Point Processes

    Full text link
    Determinantal point processes (DPPs) offer a powerful approach to modeling diversity in many applications where the goal is to select a diverse subset. We study the problem of learning the parameters (the kernel matrix) of a DPP from labeled training data. We make two contributions. First, we show how to reparameterize a DPP's kernel matrix with multiple kernel functions, thus enhancing modeling flexibility. Second, we propose a novel parameter estimation technique based on the principle of large margin separation. In contrast to the state-of-the-art method of maximum likelihood estimation, our large-margin loss function explicitly models errors in selecting the target subsets, and it can be customized to trade off different types of errors (precision vs. recall). Extensive empirical studies validate our contributions, including applications on challenging document and video summarization, where flexibility in modeling the kernel matrix and balancing different errors is indispensable.Comment: 15 page

    Learning Detection with Diverse Proposals

    Full text link
    To predict a set of diverse and informative proposals with enriched representations, this paper introduces a differentiable Determinantal Point Process (DPP) layer that is able to augment the object detection architectures. Most modern object detection architectures, such as Faster R-CNN, learn to localize objects by minimizing deviations from the ground-truth but ignore correlation between multiple proposals and object categories. Non-Maximum Suppression (NMS) as a widely used proposal pruning scheme ignores label- and instance-level relations between object candidates resulting in multi-labeled detections. In the multi-class case, NMS selects boxes with the largest prediction scores ignoring the semantic relation between categories of potential election. In contrast, our trainable DPP layer, allowing for Learning Detection with Diverse Proposals (LDDP), considers both label-level contextual information and spatial layout relationships between proposals without increasing the number of parameters of the network, and thus improves location and category specifications of final detected bounding boxes substantially during both training and inference schemes. Furthermore, we show that LDDP keeps it superiority over Faster R-CNN even if the number of proposals generated by LDPP is only ~30% as many as those for Faster R-CNN.Comment: Accepted to CVPR 201
    • …
    corecore