623 research outputs found

    Multi-channel Hybrid Access Femtocells: A Stochastic Geometric Analysis

    Full text link
    For two-tier networks consisting of macrocells and femtocells, the channel access mechanism can be configured to be open access, closed access, or hybrid access. Hybrid access arises as a compromise between open and closed access mechanisms, in which a fraction of available spectrum resource is shared to nonsubscribers while the remaining reserved for subscribers. This paper focuses on a hybrid access mechanism for multi-channel femtocells which employ orthogonal spectrum access schemes. Considering a randomized channel assignment strategy, we analyze the performance in the downlink. Using stochastic geometry as technical tools, we model the distribution of femtocells as Poisson point process or Neyman-Scott cluster process and derive the distributions of signal-to-interference-plus-noise ratios, and mean achievable rates, of both nonsubscribers and subscribers. The established expressions are amenable to numerical evaluation, and shed key insights into the performance tradeoff between subscribers and nonsubscribers. The analytical results are corroborated by numerical simulations.Comment: This is the final version, which was accepted in IEEE Transactions on Communication

    Partially-Distributed Resource Allocation in Small-Cell Networks

    Full text link
    We propose a four-stage hierarchical resource allocation scheme for the downlink of a large-scale small-cell network in the context of orthogonal frequency-division multiple access (OFDMA). Since interference limits the capabilities of such networks, resource allocation and interference management are crucial. However, obtaining the globally optimum resource allocation is exponentially complex and mathematically intractable. Here, we develop a partially decentralized algorithm to obtain an effective solution. The three major advantages of our work are: 1) as opposed to a fixed resource allocation, we consider load demand at each access point (AP) when allocating spectrum; 2) to prevent overloaded APs, our scheme is dynamic in the sense that as the users move from one AP to the other, so do the allocated resources, if necessary, and such considerations generally result in huge computational complexity, which brings us to the third advantage: 3) we tackle complexity by introducing a hierarchical scheme comprising four phases: user association, load estimation, interference management via graph coloring, and scheduling. We provide mathematical analysis for the first three steps modeling the user and AP locations as Poisson point processes. Finally, we provide results of numerical simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on Wireless Communication

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore