24 research outputs found

    Clustered data muling in the internet of things in motion

    Get PDF
    This paper considers a case where an Unmanned Aerial Vehicle (UAV) is used to monitor an area of interest. The UAV is assisted by a Sensor Network (SN), which is deployed in the area such as a smart city or smart village. The area being monitored has a reasonable size and hence may contain many sensors for efficient and accurate data collection. In this case, it would be expensive for one UAV to visit all the sensors; hence the need to partition the ground network into an optimum number of clusters with the objective of having the UAV visit only cluster heads (fewer sensors). In such a setting, the sensor readings (sensor data) would be sent to cluster heads where they are collected by the UAV upon its arrival. This paper proposes a clustering scheme that optimizes not only the sensor network energy usage, but also the energy used by the UAV to cover the area of interest. The computation of the number of optimal clusters in a dense and uniformly-distributed sensor network is proposed to complement the k-means clustering algorithm when used as a network engineering technique in hybrid UAV/terrestrial networks. Furthermore, for general networks, an efficient clustering model that caters for both orphan nodes and multi-layer optimization is proposed and analyzed through simulations using the city of Cape Town in South Africa as a smart city hybrid network engineering use-case

    Trajectory planing for cooperating unmanned aerial vehicles in the IoT

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) in data transport has attracted a lot of attention and applications, as a modern traffic engineering technique used in data sensing, transport, and delivery to where infrastructure is available for its interpretation. Due to UAVs’ constraints such as limited power lifetime, it has been necessary to assist them with ground sensors to gather local data, which has to be transferred to UAVs upon visiting the sensors. The management of such ground sensor communication together with a team of flying UAVs constitutes an interesting data muling problem, which still deserves to be addressed and investigated. This paper revisits the issue of traffic engineering in Internet-of-Things (IoT) settings, to assess the relevance of using UAVs for the persistent collection of sensor readings from the sensor nodes located in an environment and their delivery to base stations where further processing is performed. We propose a persistent path planning and UAV allocation model, where a team of heterogeneous UAVs coming from various base stations are used to collect data from ground sensors and deliver the collected information to their closest base stations. This problem is mathematically formalised as a real-time constrained optimisation model, and proven to be NP-hard. The paper proposes a heuristic solution to the problem and evaluates its relative efficiency through performing experiments on both artificial and real sensors networks, using various scenarios of UAVs settings

    Cooperative data muling using a team of unmanned aerial vehicles

    Get PDF
    Philosophiae Doctor - PhDUnmanned Aerial Vehicles (UAVs) have recently o ered signi cant technological achievements. The advancement in related applications predicts an extended need for automated data muling by UAVs, to explore high risk places, ensure e ciency and reduce the cost of various products and services. Due to advances in technology, the actual UAVs are not as expensive as they once were. On the other hand, they are limited in their ight time especially if they have to use fuel. As a result, it has recently been proposed that they could be assisted by the ground static sensors which provide information of their surroundings. Then, the UAVs need only to provide actions depending on information received from the ground sensors. In addition, UAVs need to cooperate among themselves and work together with organised ground sensors to achieve an optimal coverage. The system to handle the cooperation of UAVs, together with the ground sensors, is still an interesting research topic which would bene t both rural and urban areas. In this thesis, an e cient ground sensor network for optimal UAVs coverage is rst proposed. This is done using a clustering scheme wherein, each cluster member transmits its sensor readings to its cluster head. A more e cient routing scheme for delivering readings to cluster head(s) for collection by UAVs is also proposed. Furthermore, airborne sensor deployment models are provided for e cient data collection from a unique sensor/target. The model proposed for this consists of a scheduling technique which manages the visitation of UAVs to target. Lastly, issues relating to the interplay between both types of sensor (airborne and ground/underground) networks are addressed by proposing the optimal UAVs task allocation models; which take caters for both the ground networking and aerial deployment. Existing network and tra c engineering techniques were adopted in order to handle the internetworking of the ground sensors. UAVs deployment is addressed by adopting Operational Research techniques including dynamic assignment and scheduling models. The proposed models were validated by simulations, experiments and in some cases, formal methods used to formalise and prove the correctness of key properties

    An Enhanced Heterogeneous Gateway-Based Energy-Aware Multi-Hop Routing Protocol for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) continue to provide essential services for various applications such as surveillance, data gathering, and data transmission from hazardous environments to safer destinations. This has been enhanced by the energy-efficient routing protocols that are mostly designed for such purposes. Gateway-based Energy-Aware Multi-hop Routing protocol (MGEAR) is one of the homogenous routing schemes that was recently designed to more efficiently reduce the energy consumption of distant nodes. However, it has been found that the protocol has a high energy consumption rate, lower stability period, and poorer data transmission to the Base station (BS) when it was deployed for a longer period of time. In this paper, an enhanced Heterogeneous Gateway-based Energy-Aware multi-hop routing protocol (HMGEAR) is proposed. The proposed routing scheme is based on the introduction of heterogeneous nodes in the existing scheme, selection of the head based on the residual energy, introduction of multi-hop communication strategy in all the regions of the network, and implementation of energy hole elimination technique. All these strategies are aiming at reducing energy consumption and extend the life of the network. Results show that the proposed routing scheme outperforms two existing ones in terms of stability period, throughputs, residual energy, and the lifetime of the network

    A Novel Epidemic Model for the Interference Spread in the Internet of Things

    Get PDF
    Due to the multi-technology advancements, internet of things (IoT) applications are in high demand to create smarter environments. Smart objects communicate by exchanging many messages, and this creates interference on receivers. Collection tree algorithms are applied to only reduce the nodes/paths’ interference but cannot fully handle the interference across the underlying IoT. This paper models and analyzes the interference spread in the IoT setting, where the collection tree routing algorithm is adopted. Node interference is treated as a real-life contamination of a disease, where individuals can migrate across compartments such as susceptible, attacked and replaced. The assumed typical collection tree routing model is the least interference beaconing algorithm (LIBA), and the dynamics of the interference spread is studied. The underlying network’s nodes are partitioned into groups of nodes which can affect each other and based on the partition property, the susceptible–attacked–replaced (SAR) model is proposed. To analyze the model, the system stability is studied, and the compartmental based trends are experimented in static, stochastic and predictive systems. The results shows that the dynamics of the system are dependent groups and all have points of convergence for static, stochastic and predictive systems

    A Novel Epidemic Model for the Interference Spread in the Internet of Things

    Get PDF
    : Due to the multi-technology advancements, internet of things (IoT) applications are in high demand to create smarter environments. Smart objects communicate by exchanging many messages, and this creates interference on receivers. Collection tree algorithms are applied to only reduce the nodes/paths’ interference but cannot fully handle the interference across the underlying IoT. This paper models and analyzes the interference spread in the IoT setting, where the collection tree routing algorithm is adopted. Node interference is treated as a real-life contamination of a disease, where individuals can migrate across compartments such as susceptible, attacked and replaced. The assumed typical collection tree routing model is the least interference beaconing algorithm (LIBA), and the dynamics of the interference spread is studied. The underlying network’s nodes are partitioned into groups of nodes which can affect each other and based on the partition property, the susceptible–attacked–replaced (SAR) model is proposed. To analyze the model, the system stability is studied, and the compartmental based trends are experimented in static, stochastic and predictive systems. The results shows that the dynamics of the system are dependent groups and all have points of convergence for static, stochastic and predictive systems

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Detecting Learning Patterns in Tertiary Education Using K-Means Clustering

    Get PDF
    Abstract: We are in the era where various processes need to be online. However, data from digital learning platforms are still underutilised in higher education, yet, they contain student learning pat- terns, whose awareness would contribute to educational development. Furthermore, the knowledge of student progress would inform educators whether they would mitigate teaching conditions for critically performing students. Less knowledge of performance patterns limits the development of adaptive teaching and learning mechanisms. In this paper, a model for data exploitation to dynamically study students progress is proposed. Variables to determine current students progress are defined and are used to group students into different clusters. A model for dynamic clustering is proposed and related cluster migration is analysed to isolate poorer or higher performing students. K-means clustering is performed on real data consisting of students from a South African tertiary institution. The proposed model for cluster migration analysis is applied and the corresponding learning patterns are revealed
    corecore