10 research outputs found

    Model-based clustering via linear cluster-weighted models

    Full text link
    A novel family of twelve mixture models with random covariates, nested in the linear tt cluster-weighted model (CWM), is introduced for model-based clustering. The linear tt CWM was recently presented as a robust alternative to the better known linear Gaussian CWM. The proposed family of models provides a unified framework that also includes the linear Gaussian CWM as a special case. Maximum likelihood parameter estimation is carried out within the EM framework, and both the BIC and the ICL are used for model selection. A simple and effective hierarchical random initialization is also proposed for the EM algorithm. The novel model-based clustering technique is illustrated in some applications to real data. Finally, a simulation study for evaluating the performance of the BIC and the ICL is presented

    Graphical and computational tools to guide parameter choice for the cluster weighted robust model

    Get PDF
    The Cluster Weighted Robust Model (CWRM) is a recently introduced methodology to robustly estimate mixtures of regressions with random covariates. The CWRM allows users to flexibly perform regression clustering, safeguarding it against data contamination and spurious solutions. Nonetheless, the resulting solution depends on the chosen number of components in the mixture, the percentage of impartial trimming, the degree of heteroscedasticity of the errors around the regression lines and of the clusters in the explanatory variables. Therefore an appropriate model selection is crucially required. Such a complex modeling task may generate several “legitimate” solutions: each one derived from a distinct hyper-parameters specification. The present paper introduces a two step-monitoring procedure to help users effectively explore such a vast model space. The first phase uncovers the most appropriate percentages of trimming, whilst the second phase explores the whole set of solutions, conditioning on the outcome derived from the previous step. The final output singles out a set of “top” solutions, whose optimality, stability and validity is assessed. Novel graphical and computational tools - specifically tailored for the CWRM framework - will help the user make an educated choice among the optimal solutions. Three examples on real datasets showcase our proposal in action. Supplementary files for this article are available online
    corecore