36,480 research outputs found

    Multi-Dialect Speech Recognition With A Single Sequence-To-Sequence Model

    Full text link
    Sequence-to-sequence models provide a simple and elegant solution for building speech recognition systems by folding separate components of a typical system, namely acoustic (AM), pronunciation (PM) and language (LM) models into a single neural network. In this work, we look at one such sequence-to-sequence model, namely listen, attend and spell (LAS), and explore the possibility of training a single model to serve different English dialects, which simplifies the process of training multi-dialect systems without the need for separate AM, PM and LMs for each dialect. We show that simply pooling the data from all dialects into one LAS model falls behind the performance of a model fine-tuned on each dialect. We then look at incorporating dialect-specific information into the model, both by modifying the training targets by inserting the dialect symbol at the end of the original grapheme sequence and also feeding a 1-hot representation of the dialect information into all layers of the model. Experimental results on seven English dialects show that our proposed system is effective in modeling dialect variations within a single LAS model, outperforming a LAS model trained individually on each of the seven dialects by 3.1 ~ 16.5% relative.Comment: submitted to ICASSP 201

    Optimizing expected word error rate via sampling for speech recognition

    Full text link
    State-level minimum Bayes risk (sMBR) training has become the de facto standard for sequence-level training of speech recognition acoustic models. It has an elegant formulation using the expectation semiring, and gives large improvements in word error rate (WER) over models trained solely using cross-entropy (CE) or connectionist temporal classification (CTC). sMBR training optimizes the expected number of frames at which the reference and hypothesized acoustic states differ. It may be preferable to optimize the expected WER, but WER does not interact well with the expectation semiring, and previous approaches based on computing expected WER exactly involve expanding the lattices used during training. In this paper we show how to perform optimization of the expected WER by sampling paths from the lattices used during conventional sMBR training. The gradient of the expected WER is itself an expectation, and so may be approximated using Monte Carlo sampling. We show experimentally that optimizing WER during acoustic model training gives 5% relative improvement in WER over a well-tuned sMBR baseline on a 2-channel query recognition task (Google Home)

    Efficient Implementation of the Room Simulator for Training Deep Neural Network Acoustic Models

    Full text link
    In this paper, we describe how to efficiently implement an acoustic room simulator to generate large-scale simulated data for training deep neural networks. Even though Google Room Simulator in [1] was shown to be quite effective in reducing the Word Error Rates (WERs) for far-field applications by generating simulated far-field training sets, it requires a very large number of Fast Fourier Transforms (FFTs) of large size. Room Simulator in [1] used approximately 80 percent of Central Processing Unit (CPU) usage in our CPU + Graphics Processing Unit (GPU) training architecture [2]. In this work, we implement an efficient OverLap Addition (OLA) based filtering using the open-source FFTW3 library. Further, we investigate the effects of the Room Impulse Response (RIR) lengths. Experimentally, we conclude that we can cut the tail portions of RIRs whose power is less than 20 dB below the maximum power without sacrificing the speech recognition accuracy. However, we observe that cutting RIR tail more than this threshold harms the speech recognition accuracy for rerecorded test sets. Using these approaches, we were able to reduce CPU usage for the room simulator portion down to 9.69 percent in CPU/GPU training architecture. Profiling result shows that we obtain 22.4 times speed-up on a single machine and 37.3 times speed up on Google's distributed training infrastructure.Comment: Published at INTERSPEECH 2018. (https://www.isca-speech.org/archive/Interspeech_2018/abstracts/2566.html

    Speech Synthesis Based on Hidden Markov Models

    Get PDF
    corecore