10,410 research outputs found

    Multi-view Unsupervised Feature Selection by Cross-diffused Matrix Alignment

    Full text link
    Multi-view high-dimensional data become increasingly popular in the big data era. Feature selection is a useful technique for alleviating the curse of dimensionality in multi-view learning. In this paper, we study unsupervised feature selection for multi-view data, as class labels are usually expensive to obtain. Traditional feature selection methods are mostly designed for single-view data and cannot fully exploit the rich information from multi-view data. Existing multi-view feature selection methods are usually based on noisy cluster labels which might not preserve sufficient information from multi-view data. To better utilize multi-view information, we propose a method, CDMA-FS, to select features for each view by performing alignment on a cross diffused matrix. We formulate it as a constrained optimization problem and solve it using Quasi-Newton based method. Experiments results on four real-world datasets show that the proposed method is more effective than the state-of-the-art methods in multi-view setting.Comment: 8 page

    Unsupervised Meta-path Reduction on Heterogeneous Information Networks

    Full text link
    Heterogeneous Information Network (HIN) has attracted much attention due to its wide applicability in a variety of data mining tasks, especially for tasks with multi-typed objects. A potentially large number of meta-paths can be extracted from the heterogeneous networks, providing abundant semantic knowledge. Though a variety of meta-paths can be defined, too many meta-paths are redundant. Reduction on the number of meta-paths can enhance the effectiveness since some redundant meta-paths provide interferential linkage to the task. Moreover, the reduced meta-paths can reflect the characteristic of the heterogeneous network. Previous endeavors try to reduce the number of meta-paths under the guidance of supervision information. Nevertheless, supervised information is expensive and may not always be available. In this paper, we propose a novel algorithm, SPMR (Semantic Preserving Meta-path Reduction), to reduce a set of pre-defined meta-paths in an unsupervised setting. The proposed method is able to evaluate a set of meta-paths to maximally preserve the semantics of original meta-paths after reduction. Experimental results show that SPMR can select a succinct subset of meta-paths which can achieve comparable or even better performance with fewer meta-paths

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    Feature Selection: A Data Perspective

    Full text link
    Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data mining and machine learning problems. The objectives of feature selection include: building simpler and more comprehensible models, improving data mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity based, information theoretical based, sparse learning based and statistical based methods. To facilitate and promote the research in this community, we also present an open-source feature selection repository that consists of most of the popular feature selection algorithms (\url{http://featureselection.asu.edu/}). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research

    Unsupervised Feature Selection via Multi-step Markov Transition Probability

    Full text link
    Feature selection is a widely used dimension reduction technique to select feature subsets because of its interpretability. Many methods have been proposed and achieved good results, in which the relationships between adjacent data points are mainly concerned. But the possible associations between data pairs that are may not adjacent are always neglected. Different from previous methods, we propose a novel and very simple approach for unsupervised feature selection, named MMFS (Multi-step Markov transition probability for Feature Selection). The idea is using multi-step Markov transition probability to describe the relation between any data pair. Two ways from the positive and negative viewpoints are employed respectively to keep the data structure after feature selection. From the positive viewpoint, the maximum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. Then, the features which can keep the compact data structure are selected. From the viewpoint of negative, the minimum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. On the contrary, the features that least maintain the loose data structure are selected. And the two ways can also be combined. Thus three algorithms are proposed. Our main contributions are a novel feature section approach which uses multi-step transition probability to characterize the data structure, and three algorithms proposed from the positive and negative aspects for keeping data structure. The performance of our approach is compared with the state-of-the-art methods on eight real-world data sets, and the experimental results show that the proposed MMFS is effective in unsupervised feature selection

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    Clustering with Similarity Preserving

    Full text link
    Graph-based clustering has shown promising performance in many tasks. A key step of graph-based approach is the similarity graph construction. In general, learning graph in kernel space can enhance clustering accuracy due to the incorporation of nonlinearity. However, most existing kernel-based graph learning mechanisms is not similarity-preserving, hence leads to sub-optimal performance. To overcome this drawback, we propose a more discriminative graph learning method which can preserve the pairwise similarities between samples in an adaptive manner for the first time. Specifically, we require the learned graph be close to a kernel matrix, which serves as a measure of similarity in raw data. Moreover, the structure is adaptively tuned so that the number of connected components of the graph is exactly equal to the number of clusters. Finally, our method unifies clustering and graph learning which can directly obtain cluster indicators from the graph itself without performing further clustering step. The effectiveness of this approach is examined on both single and multiple kernel learning scenarios in several datasets

    Learning for Multi-Model and Multi-Type Fitting

    Full text link
    Multi-model fitting has been extensively studied from the random sampling and clustering perspectives. Most assume that only a single type/class of model is present and their generalizations to fitting multiple types of models/structures simultaneously are non-trivial. The inherent challenges include choice of types and numbers of models, sampling imbalance and parameter tuning, all of which render conventional approaches ineffective. In this work, we formulate the multi-model multi-type fitting problem as one of learning deep feature embedding that is clustering-friendly. In other words, points of the same clusters are embedded closer together through the network. For inference, we apply K-means to cluster the data in the embedded feature space and model selection is enabled by analyzing the K-means residuals. Experiments are carried out on both synthetic and real world multi-type fitting datasets, producing state-of-the-art results. Comparisons are also made on single-type multi-model fitting tasks with promising results as well

    Improving Image Clustering With Multiple Pretrained CNN Feature Extractors

    Full text link
    For many image clustering problems, replacing raw image data with features extracted by a pretrained convolutional neural network (CNN), leads to better clustering performance. However, the specific features extracted, and, by extension, the selected CNN architecture, can have a major impact on the clustering results. In practice, this crucial design choice is often decided arbitrarily due to the impossibility of using cross-validation with unsupervised learning problems. However, information contained in the different pretrained CNN architectures may be complementary, even when pretrained on the same data. To improve clustering performance, we rephrase the image clustering problem as a multi-view clustering (MVC) problem that considers multiple different pretrained feature extractors as different "views" of the same data. We then propose a multi-input neural network architecture that is trained end-to-end to solve the MVC problem effectively. Our experimental results, conducted on three different natural image datasets, show that: 1. using multiple pretrained CNNs jointly as feature extractors improves image clustering; 2. using an end-to-end approach improves MVC; and 3. combining both produces state-of-the-art results for the problem of image clustering.Comment: 13 pages, 3 figures, 4 tables. Poster presentation at BMVC 2018 (29.9% acceptance

    Deep Spectral Clustering using Dual Autoencoder Network

    Full text link
    The clustering methods have recently absorbed even-increasing attention in learning and vision. Deep clustering combines embedding and clustering together to obtain optimal embedding subspace for clustering, which can be more effective compared with conventional clustering methods. In this paper, we propose a joint learning framework for discriminative embedding and spectral clustering. We first devise a dual autoencoder network, which enforces the reconstruction constraint for the latent representations and their noisy versions, to embed the inputs into a latent space for clustering. As such the learned latent representations can be more robust to noise. Then the mutual information estimation is utilized to provide more discriminative information from the inputs. Furthermore, a deep spectral clustering method is applied to embed the latent representations into the eigenspace and subsequently clusters them, which can fully exploit the relationship between inputs to achieve optimal clustering results. Experimental results on benchmark datasets show that our method can significantly outperform state-of-the-art clustering approaches
    corecore