293 research outputs found

    Design and semantics of a decentralized authorization language

    Get PDF
    We present a declarative authorization language that strikes a careful balance between syntactic and semantic simplicity, policy expressiveness, and execution efficiency. The syntax is close to natural language, and the semantics consists of just three deduction rules. The language can express many common policy idioms using constraints, controlled delegation, recursive predicates, and negated queries. We describe an execution strategy based on translation to Datalog with Constraints, and table-based resolution. We show that this execution strategy is sound, complete, and always terminates, despite recursion and negation, as long as simple syntactic conditions are met

    Efficient Iterative Programs with Distributed Data Collections

    Full text link
    Big data programming frameworks have become increasingly important for the development of applications for which performance and scalability are critical. In those complex frameworks, optimizing code by hand is hard and time-consuming, making automated optimization particularly necessary. In order to automate optimization, a prerequisite is to find suitable abstractions to represent programs; for instance, algebras based on monads or monoids to represent distributed data collections. Currently, however, such algebras do not represent recursive programs in a way which allows for analyzing or rewriting them. In this paper, we extend a monoid algebra with a fixpoint operator for representing recursion as a first class citizen and show how it enables new optimizations. Experiments with the Spark platform illustrate performance gains brought by these systematic optimizations.Comment: 36 page

    Incremental Processing and Optimization of Update Streams

    Get PDF
    Over the recent years, we have seen an increasing number of applications in networking, sensor networks, cloud computing, and environmental monitoring, which monitor, plan, control, and make decisions over data streams from multiple sources. We are interested in extending traditional stream processing techniques to meet the new challenges of these applications. Generally, in order to support genuine continuous query optimization and processing over data streams, we need to systematically understand how to address incremental optimization and processing of update streams for a rich class of queries commonly used in the applications. Our general thesis is that efficient incremental processing and re-optimization of update streams can be achieved by various incremental view maintenance techniques if we cast the problems as incremental view maintenance problems over data streams. We focus on two incremental processing of update streams challenges currently not addressed in existing work on stream query processing: incremental processing of transitive closure queries over data streams, and incremental re-optimization of queries. In addition to addressing these specific challenges, we also develop a working prototype system Aspen, which serves as an end-to-end stream processing system that has been deployed as the foundation for a case study of our SmartCIS application. We validate our solutions both analytically and empirically on top of our prototype system Aspen, over a variety of benchmark workloads such as TPC-H and LinearRoad Benchmarks
    • …
    corecore