1,140 research outputs found

    Evaluating applications of the unmanned aerial system in construction project management

    Get PDF
    Using unmanned aerial vehicle systems (UAS) or drones in project management (PM) is a novel methodology aimed at enhancing the performance of the PM system. This technology is still in its infancy, and some serious progress is required to cover and advance in this field. UAS is used in various applications ranging from site mapping, surveying, traffic surveillance, bushfire monitoring and aerial photography. Despite the multiple functions offered by UAS, which are well covered in various sources, industry practitioners still have little confidence and knowledge on this technology. The value of the data collected using UAS technology is still poorly utilised and understood. This project aims to explore areas in PM that can be enhanced while using UAS and understand the added value of adopting this new technology. This research will utilise Unmanned Aerial Vehicle (UAV) with high- definition (HD) cameras to collect real time imageries of construction sites. The collected data, with the aid of a photogrammetric software Pix4D, is used to develop a detailed UAS system to determine the accuracy of performed work, the generation of the corresponding progress payment reports, and referencing and tracking information in real time for a residential project. This study also discusses combining the UAS and 5D Building Information Modelling (BIM) data to develop smart construction sites. The UAS–BIM combination enables the project stakeholders to be fully informed of the work’s progress and quality to prevent mistakes that could lead to additional costs and delays. The paper identified the primary obstacles to applying the UAS via interviews with the project managers and tradespersons involved in the selected project. Assuredly, digital culture is essential for an intelligent construction site to shift the project team from a passive data user to a more proactive analyser to improve performance and site safety. This research is aimed at building a holistic digital system which will be applied and utilised in Construction Project Management (CPM) fields to improve the performance of site management and the quality of work performed. Other obstacles include ethical reservations, legal requirements, liability risks, weather conditions and the continuation of using a UAS in non-open-air construction environments

    Radicalization of Airspace Security: Prospects and Botheration of Drone Defense System Technology

    Get PDF
    The development of a comprehensive and decisive drone defense integrated control system that can provide maximum security is crucial for maintaining territorial integrity and accelerating smart aerial mobility to sustain the emerging drone transportation system (DTS) for priority-based logistics and mobile communication. This study explores recent developments in the design of robust drone defense control systems that can observe and respond not only to drone attacks inside and outside a facility but also to equipment data such as CCTV security control on the ground and security sensors in the facility at a glance. Also, it considered DDS strategies, schema, and innovative security setups in different regions. Finally, open research issues in DDs designs are discussed, and useful recommendations are provided. Effective means for drone source authentication, delivery package verification, operator authorization, and dynamic scenario-specific engagement are solicited for comprehensive DDS design for maximum security Received: 2023-03-07 Revised: 2023-04-2

    Mixed initiative planning and control of UAV teams for persistent surveillance

    Get PDF
    Tese de mestrado. Mestrado Integrado em Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Bridge Inspection: Human Performance, Unmanned Aerial Systems and Automation

    Get PDF
    Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure
    • …
    corecore