25,418 research outputs found

    Special section Industry 4.0: Challenges for the future in manufacturing

    Get PDF
    International audienceThe sensing enterprise is a digital business innovation concept making Cyber-Physical Systems, service-oriented architectures and advanced human-computer interactions converge, supporting a more agile, flexible, and proactive management of unexpected events in today’s global value networks. In essence, it concerns the adoption of future Internet technologies in virtual enterprises. Translating this concept to a general approach to smart systems (smart manufacturing, smart cities, smart logistics, etc.), requires new capabilities by next-generation information systems to perform sensing, modelling, and interpretation of “any” signal from the real world, thus providing the systems with higher flexibility and possibilities for reconfiguration (Panetto et al. 2016). Intuitively, a sensing system requires resources and machineries to be constantly monitored, configured, and easily controlled by human operators. All these functions, and much more indeed, are now implemented by the so-called (Industrial) Internet of Things or Cyber-Physical Systems. With the advent of the new cyber-physical system design paradigm, the number and diversity of systems that need to work together in the future enterprises have significantly increased (Weichhart et al. 2016). This trend highlights the need to shift from the classic central control of systems, towards systems interoperability as a capability to control, sense, and perceive distributed and heterogeneous systems and their environments, as well as to purposefully and socially act upon their perceptions. Such a shift could have important consequences on the future architecture design of the control of these systems. The emergence of cloud-based technologies will also have a significant impact on the design and implementation of cyber-physical systems; using such novel technologies, collaborative engineering practises will increase globally, thus enabling a new generation of small-scale industrial organizations to function in an information-centric manner and enabling industry 4.0 transformations (Cimini, et al, 2017). The potential of such technologies in fostering a leaner and more agile approach towards engineering is very high. Engineers and engineering organizations no longer have to be restricted to the availability of advanced processing capabilities, as they can adopt a ‘pay as you go’ approach, which will enable them to access and use software resources for engineering activities from any remote location in the world

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE
    • 

    corecore